The theory of Quantum Groups is a rapidly developing area with numerous applications in mathematics and theoretical physics, e.g. in link and knot invariants in topology, q-special functions, conformal field theory, quantum integrable models. The aim of the Euler Institute's workshops was to review and compile the progress achieved in the different subfields. Near 100 participants came from 14 countries. More than 20 contributions written up for this book contain new, unpublished material and half of them include a survey of recent results in the field (deformation theory, graded differential algebras, contraction technique, knot invariants, q-special functions). FROM THE CONTENTS: V.G. Drinfeld: On Some Unsolved Problems in Quantum Group Theory.- M. Gerstenhaber, A. Giaquinto, S.D. Schack: Quantum Symmetry.- L.I. Korogodsky,L.L. Vaksman: Quantum G-Spaces and Heisenberg Algebra.-J. Stasheff: Differential Graded Lie Algebras, Quasi-Hopf Algebras and Higher Homotopy Algebras.- A.Yu. Alekseev, L.D. Faddeev, M.A. Semenov-Tian-Shansky: Hidden Quantum Groups inside Kac-Moody Algebras.- J.-L. Gervais: Quantum Group Symmetry of 2D Gravity.- T. Kohno: Invariants of 3-Manifolds Based on Conformal Field Theory and Heegaard Splitting.- O. Viro: Moves of Triangulations of a PL-Manifold.
ISBN: | 9783540553052 |
Publication date: | 25th March 1992 |
Author: | Petr P Kulish |
Publisher: | Springer an imprint of Springer Berlin Heidelberg |
Format: | Paperback |
Pagination: | 408 pages |
Series: | Lecture Notes in Mathematics |
Genres: |
Mathematics Condensed matter physics (liquid state and solid state physics) Particle and high-energy physics Quantum physics (quantum mechanics and quantum field theory) Materials science Groups and group theory Topology |