10% off all books and free delivery over £50
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

The Embedding Problem in Galois Theory

View All Editions (1)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

The Embedding Problem in Galois Theory Synopsis

The central problem of modern Galois theory involves the inverse problem: given a field $k$ and a group $G$, construct an extension $L/k$ with Galois group $G$. The embedding problem for fields generalizes the inverse problem and consists in finding the conditions under which one can construct a field $L$ normal over $k$, with group $G$, such that $L$ extends a given normal extension $K/k$ with Galois group $G/A$. Moreover, the requirements applied to the object $L$ to be found are usually weakened: it is not necessary for $L$ to be a field, but $L$ must be a Galois algebra over the field $k$, with group $G$.In this setting, the embedding problem is rich in content. But the inverse problem in terms of Galois algebras is poor in content because a Galois algebra providing a solution of the inverse problem always exists and may be easily constructed. The embedding problem is a fruitful approach to the solution of the inverse problem in Galois theory. This book is based on D. K. Faddeev's lectures on embedding theory at St. Petersburg University and contains the main results on the embedding problem. All stages of development are presented in a methodical and unified manner.

About This Edition

ISBN: 9780821845929
Publication date:
Author: V V Ishkhanov, B B Lure, D K Faddeev
Publisher: American Mathematical Society
Format: Hardback
Pagination: 182 pages
Series: Translations of Mathematical Monographs
Genres: Algebra