LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Barry Simon - Author

About the Author

Books by Barry Simon

Functional Integration and Quantum Physics

Functional Integration and Quantum Physics

Author: Barry Simon Format: Hardback Release Date: 04/07/2020

The main theme of this book is the 'path integral technique' and its applications to constructive methods of quantum physics. The central topic is probabilistic foundations of the Feynman-Kac formula. Starting with main examples of Gaussian processes (the Brownian motion, the oscillatory process, and the Brownian bridge), the author presents four different proofs of the Feynman-Kac formula. Also included is a simple exposition of stochastic Ito calculus and its applications, in particular to the Hamiltonian of a particle in a magnetic field (the Feynman-Kac-Ito formula).Among other topics discussed are the probabilistic approach to the bound of the number of ground states of correlation inequalities (the Birman-Schwinger principle, Lieb's formula, etc.), the calculation of asymptotics for functional integrals of Laplace type (the theory of Donsker-Varadhan) and applications, scattering theory, the theory of crushed ice, and the Wiener sausage. Written with great care and containing many highly illuminating examples, this classic book is highly recommended to anyone interested in applications of functional integration to quantum physics. It can also serve as a textbook for a course in functional integration.

Representations of Finite and Compact Groups

Representations of Finite and Compact Groups

Author: Barry Simon Format: Hardback Release Date: 01/07/2020

Barry Simon, I.B.M. Professor of Mathematics and Theoretical Physics at the California Institute of Technology, is the author of several books, including such classics as Methods of Mathematical Physics (with M. Reed) and Functional Integration and Quantum Physics . This new book, based on courses given at Princeton, Caltech, ETH-Zurich, and other universities, is an introductory textbook on representation theory.According to the author, 'Two facets distinguish my approach. First, this book is relatively elementary, and second, while the bulk of the books on the subject is written from the point of view of an algebraist or a geometer, this book is written with an analytical flavor'. The exposition in the book centers around the study of representation of certain concrete classes of groups, including permutation groups and compact semi simple Lie groups. It culminates in the complete proof of the Weyl character formula for representations of compact Lie groups and the Frobenius formula for characters of permutation groups. Extremely well tailored both for a one-year course in representation theory and for independent study, this book is an excellent introduction to the subject which, according to the author, is unique in having 'so much innate beauty so close to the surface'.

Orthogonal Polynomials on the Unit Circle

Orthogonal Polynomials on the Unit Circle

Author: Barry Simon Format: Paperback / softback Release Date: 30/06/2020

This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrodinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szego's theorems), limit theorems for the density of the zeros of orthogonal polynomials, matrix representations for multiplication by $z$ (CMV matrices), periodic Verblunsky coefficients from the point of view of meromorphic functions on hyperelliptic surfaces, and connections between the theories of orthogonal polynomials on the unit circle and on the real line.

Loewner's Theorem on Monotone Matrix Functions

Loewner's Theorem on Monotone Matrix Functions

Author: Barry Simon Format: Hardback Release Date: 25/09/2019

This book provides an in depth discussion of Loewner's theorem on the characterization of matrix monotone functions. The author refers to the book as a 'love poem,' one that highlights a unique mix of algebra and analysis and touches on numerous methods and results. The book details many different topics from analysis, operator theory and algebra, such as divided differences, convexity, positive definiteness, integral representations of function classes, Pick interpolation, rational approximation, orthogonal polynomials, continued fractions, and more. Most applications of Loewner's theorem involve the easy half of the theorem. A great number of interesting techniques in analysis are the bases for a proof of the hard half. Centered on one theorem, eleven proofs are discussed, both for the study of their own approach to the proof and as a starting point for discussing a variety of tools in analysis. Historical background and inclusion of pictures of some of the main figures who have developed the subject, adds another depth of perspective. The presentation is suitable for detailed study, for quick review or reference to the various methods that are presented. The book is also suitable for independent study. The volume will be of interest to research mathematicians, physicists, and graduate students working in matrix theory and approximation, as well as to analysts and mathematical physicists.

Analysis and Operator Theory

Analysis and Operator Theory

Author: Barry Simon Format: Hardback Release Date: 12/06/2019

Dedicated to Tosio Kato's 100th birthday, this book contains research and survey papers on a broad spectrum of methods, theories, and problems in mathematics and mathematical physics. Survey papers and in-depth technical papers emphasize linear and nonlinear analysis, operator theory, partial differential equations, and functional analysis including nonlinear evolution equations, the Korteweg-de Vries equation, the Navier-Stokes equation, and perturbation theory of linear operators. The Kato inequality, the Kato type matrix limit theorem, the Howland-Kato commutator problem, the Kato-class of potentials, and the Trotter-Kato product formulae are discussed and analyzed. Graduate students, research mathematicians, and applied scientists will find that this book provides comprehensive insight into the significance of Tosio Kato's impact to research in analysis and operator theory.

P(0)2 Euclidean (Quantum) Field Theory

P(0)2 Euclidean (Quantum) Field Theory

Author: Barry Simon Format: Hardback Release Date: 19/04/2016

Barry Simon's book both summarizes and introduces the remarkable progress in constructive quantum field theory that can be attributed directly to the exploitation of Euclidean methods. During the past two years deep relations on both the physical level and on the level of the mathematical structure have been either uncovered or made rigorous. Connections between quantum fields and the statistical mechanics of ferromagnets have been established, for example, that now allow one to prove numerous inequalities in quantum field theory. In the first part of the book, the author presents the Euclidean methods on an axiomatic level and on the constructive level where the traditional results of the P(O)2 theory are translated into the new language. In the second part Professor Simon gives one of the approaches for constructing models of non-trivial, two-dimensional Wightman fields--specifically, the method of correlation inequalities. He discusses other approaches briefly. Drawn primarily from the author's lectures at the Eidenossiehe Technische Hochschule, Zurich, in 1973, the volume will appeal to physicists and mathematicians alike; it is especially suitable for those with limited familiarity with the literature of this very active field. Originally published in 1974. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

The Statistical Mechanics of Lattice Gases, Volume I

The Statistical Mechanics of Lattice Gases, Volume I

Author: Barry Simon Format: Hardback Release Date: 19/04/2016

A state-of-the-art survey of both classical and quantum lattice gas models, this two-volume work will cover the rigorous mathematical studies of such models as the Ising and Heisenberg, an area in which scientists have made enormous strides during the past twenty-five years. This first volume addresses, among many topics, the mathematical background on convexity and Choquet theory, and presents an exhaustive study of the pressure including the Onsager solution of the two-dimensional Ising model, a study of the general theory of states in classical and quantum spin systems, and a study of high and low temperature expansions. The second volume will deal with the Peierls construction, infrared bounds, Lee-Yang theorems, and correlation inequality. This comprehensive work will be a useful reference not only to scientists working in mathematical statistical mechanics but also to those in related disciplines such as probability theory, chemical physics, and quantum field theory. It can also serve as a textbook for advanced graduate students. Originally published in 1993. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Quantum Mechanics for Hamiltonians Defined as Quadratic Forms

Quantum Mechanics for Hamiltonians Defined as Quadratic Forms

Author: Barry Simon Format: Hardback Release Date: 19/04/2016

This monograph combines a thorough introduction to the mathematical foundations of n-body Schrodinger mechanics with numerous new results. Originally published in 1971. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Basic Complex Analysis

Basic Complex Analysis

Author: Barry Simon Format: Hardback Release Date: 30/12/2015

A Comprehensive Course in Analysis by Poincare Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2A is devoted to basic complex analysis. It interweaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, respectively. Cauchy's view focuses on the differential and integral calculus of functions of a complex variable, with the key topics being the Cauchy integral formula and contour integration. For Riemann, the geometry of the complex plane is central, with key topics being fractional linear transformations and conformal mapping. For Weierstrass, the power series is king, with key topics being spaces of analytic functions, the product formulas of Weierstrass and Hadamard, and the Weierstrass theory of elliptic functions. Subjects in this volume that are often missing in other texts include the Cauchy integral theorem when the contour is the boundary of a Jordan region, continued fractions, two proofs of the big Picard theorem, the uniformization theorem, Ahlfors's function, the sheaf of analytic germs, and Jacobi, as well as Weierstrass, elliptic functions.

Harmonic Analysis

Harmonic Analysis

Author: Barry Simon Format: Hardback Release Date: 30/12/2015

A Comprehensive Course in Analysis by Poincare Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 3 returns to the themes of Part 1 by discussing pointwise limits (going beyond the usual focus on the Hardy-Littlewood maximal function by including ergodic theorems and martingale convergence), harmonic functions and potential theory, frames and wavelets, $H^p$ spaces (including bounded mean oscillation (BMO)) and, in the final chapter, lots of inequalities, including Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.

A Comprehensive Course in Analysis, 5 Volume Set

A Comprehensive Course in Analysis, 5 Volume Set

Author: Barry Simon Format: Hardback Release Date: 30/12/2015

A Comprehensive Course in Analysis by Poincare Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

Operator Theory

Operator Theory

Author: Barry Simon Format: Hardback Release Date: 30/11/2015

A Comprehensive Course in Analysis by Poincare Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 4 focuses on operator theory, especially on a Hilbert space. Central topics are the spectral theorem, the theory of trace class and Fredholm determinants, and the study of unbounded self-adjoint operators. There is also an introduction to the theory of orthogonal polynomials and a long chapter on Banach algebras, including the commutative and non-commutative Gel'fand-Naimark theorems and Fourier analysis on general locally compact abelian groups.

Advanced Complex Analysis

Advanced Complex Analysis

Author: Barry Simon Format: Hardback Release Date: 30/10/2015

A Comprehensive Course in Analysis by Poincare Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2B provides a comprehensive look at a number of subjects of complex analysis not included in Part 2A. Presented in this volume are the theory of conformal metrics (including the Poincare metric, the Ahlfors-Robinson proof of Picard's theorem, and Bell's proof of the Painleve smoothness theorem), topics in analytic number theory (including Jacobi's two- and four-square theorems, the Dirichlet prime progression theorem, the prime number theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the theory of Fuschian differential equations, asymptotic methods (including Euler's method, stationary phase, the saddle-point method, and the WKB method), univalent functions (including an introduction to SLE), and Nevanlinna theory. The chapters on Fuschian differential equations and on asymptotic methods can be viewed as a minicourse on the theory of special functions.

Real Analysis

Real Analysis

Author: Barry Simon Format: Hardback Release Date: 30/10/2015

A Comprehensive Course in Analysis by Poincare Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Frechet spaces, Schwartz space, and $L^p$ spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.

Quantum Mechanics for Hamiltonians Defined as Quadratic Forms

Quantum Mechanics for Hamiltonians Defined as Quadratic Forms

Author: Barry Simon Format: Paperback / softback Release Date: 16/02/2015

This monograph combines a thorough introduction to the mathematical foundations of n-body Schrodinger mechanics with numerous new results. Originally published in 1971. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

P(0)2 Euclidean (Quantum) Field Theory

P(0)2 Euclidean (Quantum) Field Theory

Author: Barry Simon Format: Paperback / softback Release Date: 16/02/2015

Barry Simon's book both summarizes and introduces the remarkable progress in constructive quantum field theory that can be attributed directly to the exploitation of Euclidean methods. During the past two years deep relations on both the physical level and on the level of the mathematical structure have been either uncovered or made rigorous. Connections between quantum fields and the statistical mechanics of ferromagnets have been established, for example, that now allow one to prove numerous inequalities in quantum field theory. In the first part of the book, the author presents the Euclidean methods on an axiomatic level and on the constructive level where the traditional results of the P(O)2 theory are translated into the new language. In the second part Professor Simon gives one of the approaches for constructing models of non-trivial, two-dimensional Wightman fields--specifically, the method of correlation inequalities. He discusses other approaches briefly. Drawn primarily from the author's lectures at the Eidenossiehe Technische Hochschule, Zurich, in 1973, the volume will appeal to physicists and mathematicians alike; it is especially suitable for those with limited familiarity with the literature of this very active field. Originally published in 1974. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.