LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Neural networks & fuzzy systems

See below for a selection of the latest books from Neural networks & fuzzy systems category. Presented with a red border are the Neural networks & fuzzy systems books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Neural networks & fuzzy systems books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Intelligence Emerging Adaptivity and Search in Evolving Neural Systems

Intelligence Emerging Adaptivity and Search in Evolving Neural Systems

An investigation of intelligence as an emergent phenomenon, integrating the perspectives of evolutionary biology, neuroscience, and artificial intelligence. Emergence-the formation of global patterns from solely local interactions-is a frequent and fascinating theme in the scientific literature both popular and academic. In this book, Keith Downing undertakes a systematic investigation of the widespread (if often vague) claim that intelligence is an emergent phenomenon. Downing focuses on neural networks, both natural and artificial, and how their adaptability in three time frames-phylogenetic (evolutionary), ontogenetic (developmental), and epigenetic (lifetime learning)-underlie the emergence of cognition. Integrating the perspectives of evolutionary biology, neuroscience, and artificial intelligence, Downing provides a series of concrete examples of neurocognitive emergence. Doing so, he offers a new motivation for the expanded use of bio-inspired concepts in artificial intelligence (AI), in the subfield known as Bio-AI. One of Downing's central claims is that two key concepts from traditional AI, search and representation, are key to understanding emergent intelligence as well. He first offers introductory chapters on five core concepts: emergent phenomena, formal search processes, representational issues in Bio-AI, artificial neural networks (ANNs), and evolutionary algorithms (EAs). Intermediate chapters delve deeper into search, representation, and emergence in ANNs, EAs, and evolving brains. Finally, advanced chapters on evolving artificial neural networks and information-theoretic approaches to assessing emergence in neural systems synthesize earlier topics to provide some perspective, predictions, and pointers for the future of Bio-AI.

Hands-On Deep Learning with Go A practical guide to building and implementing neural network models using Go

Hands-On Deep Learning with Go A practical guide to building and implementing neural network models using Go

Author: Gareth Seneque, Darrell Chua Format: Paperback / softback Release Date: 08/08/2019

Apply modern deep learning techniques to build and train deep neural networks using Gorgonia Key Features Gain a practical understanding of deep learning using Golang Build complex neural network models using Go libraries and Gorgonia Take your deep learning model from design to deployment with this handy guide Book DescriptionGo is an open source programming language designed by Google for handling large-scale projects efficiently. The Go ecosystem comprises some really powerful deep learning tools such as DQN and CUDA. With this book, you'll be able to use these tools to train and deploy scalable deep learning models from scratch. This deep learning book begins by introducing you to a variety of tools and libraries available in Go. It then takes you through building neural networks, including activation functions and the learning algorithms that make neural networks tick. In addition to this, you'll learn how to build advanced architectures such as autoencoders, restricted Boltzmann machines (RBMs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. You'll also understand how you can scale model deployments on the AWS cloud infrastructure for training and inference. By the end of this book, you'll have mastered the art of building, training, and deploying deep learning models in Go to solve real-world problems. What you will learn Explore the Go ecosystem of libraries and communities for deep learning Get to grips with Neural Networks, their history, and how they work Design and implement Deep Neural Networks in Go Get a strong foundation of concepts such as Backpropagation and Momentum Build Variational Autoencoders and Restricted Boltzmann Machines using Go Build models with CUDA and benchmark CPU and GPU models Who this book is forThis book is for data scientists, machine learning engineers, and AI developers who want to build state-of-the-art deep learning models using Go. Familiarity with basic machine learning concepts and Go programming is required to get the best out of this book.

Neural Networks Neural Networks Tools and Techniques for Beginners

Neural Networks Neural Networks Tools and Techniques for Beginners

Author: John Slavio Format: Paperback / softback Release Date: 18/07/2019

Deep Learning for Search

Deep Learning for Search

Author: Tommaso Teofili Format: Paperback / softback Release Date: 28/06/2019

Description Deep Learning for Search teaches readers how to leverage neural networks, NLP, and deep learning techniques to improve search performance. Deep Learning for Search teaches readers how to improve the effectiveness of your search by implementing neural network-based techniques. By the time their finished, they'll be ready to build amazing search engines that deliver the results your users need and get better as time goes on! Key Features * Search with recommendations * Accurate and relevant rankings of search results * Generating suitable synonyms Audience Written for developers comfortable with Java or a similar language. No experience with deep learning or NLP needed. About the Technology Using deep learning and neural networks are the perfect way to create better search results, letting users fine tune what their search engines display, help speed up the results, and let them build a profile of their customers that let them find what they need every single time.

Artificial Neural Networks: Advanced Principles

Artificial Neural Networks: Advanced Principles

Author: Jeremy Rogerson Format: Hardback Release Date: 27/06/2019

Hands-On Deep Learning for IoT Train neural network models to develop intelligent IoT applications

Hands-On Deep Learning for IoT Train neural network models to develop intelligent IoT applications

Author: Mohammad Abdur Razzaque PhD, Md. Rezaul Karim Format: Paperback / softback Release Date: 27/06/2019

Implement popular deep learning techniques to make your IoT applications smarter Key Features Understand how deep learning facilitates fast and accurate analytics in IoT Build intelligent voice and speech recognition apps in TensorFlow and Chainer Analyze IoT data for making automated decisions and efficient predictions Book DescriptionArtificial Intelligence is growing quickly, which is driven by advancements in neural networks(NN) and deep learning (DL). With an increase in investments in smart cities, smart healthcare, and industrial Internet of Things (IoT), commercialization of IoT will soon be at peak in which massive amounts of data generated by IoT devices need to be processed at scale. Hands-On Deep Learning for IoT will provide deeper insights into IoT data, which will start by introducing how DL fits into the context of making IoT applications smarter. It then covers how to build deep architectures using TensorFlow, Keras, and Chainer for IoT. You'll learn how to train convolutional neural networks(CNN) to develop applications for image-based road faults detection and smart garbage separation, followed by implementing voice-initiated smart light control and home access mechanisms powered by recurrent neural networks(RNN). You'll master IoT applications for indoor localization, predictive maintenance, and locating equipment in a large hospital using autoencoders, DeepFi, and LSTM networks. Furthermore, you'll learn IoT application development for healthcare with IoT security enhanced. By the end of this book, you will have sufficient knowledge need to use deep learning efficiently to power your IoT-based applications for smarter decision making. What you will learn Get acquainted with different neural network architectures and their suitability in IoT Understand how deep learning can improve the predictive power in your IoT solutions Capture and process streaming data for predictive maintenance Select optimal frameworks for image recognition and indoor localization Analyze voice data for speech recognition in IoT applications Develop deep learning-based IoT solutions for healthcare Enhance security in your IoT solutions Visualize analyzed data to uncover insights and perform accurate predictions Who this book is forIf you're an IoT developer, data scientist, or deep learning enthusiast who wants to apply deep learning techniques to build smart IoT applications, this book is for you. Familiarity with machine learning, a basic understanding of the IoT concepts, and some experience in Python programming will help you get the most out of this book.

A Learner's Guide to Fuzzy Logic Systems, Second Edition

A Learner's Guide to Fuzzy Logic Systems, Second Edition

This book presents an introductory coverage of fuzzy logic, including basic principles from an interdisciplinary perspective. It includes concept of evolving a fuzzy set and fuzzy set operations, fuzzification rule base design and defuzzification and simple guidelines for fuzzy sets design and selected applications. Preliminary concepts of Neural Networks and Genetic Algorithm are added features with relevant examples and exercises. It is primarily intended for undergraduate and postgraduate students and researchers to facilitate education in the ever-increasing field of fuzzy logic as medium between human intelligence and machine.

Self-Learning and Adaptive Algorithms for Business Applications A Guide to Adaptive Neuro-Fuzzy Systems for Fuzzy Clustering Under Uncertainty Conditions

Self-Learning and Adaptive Algorithms for Business Applications A Guide to Adaptive Neuro-Fuzzy Systems for Fuzzy Clustering Under Uncertainty Conditions

Author: Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii Tyshchenko Format: Paperback / softback Release Date: 25/06/2019

In today's data-driven world, more sophisticated algorithms for data processing are in high demand, mainly when the data cannot be handled with the help of traditional techniques. Self-learning and adaptive algorithms are now widely used by such leading giants that as Google, Tesla, Microsoft, and Facebook in their projects and applications. In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear. Including research relevant to those studying cybernetics, applied mathematics, statistics, engineering, and bioinformatics who are working in the areas of machine learning, artificial intelligence, complex system modeling and analysis, neural networks, and optimization, this is an ideal read for anyone interested in learning more about the fascinating new developments in machine learning.

Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications

Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications

Author: Oscar Castillo Format: Paperback / softback Release Date: 06/06/2019

This book comprises papers on diverse aspects of fuzzy logic, neural networks, and nature-inspired optimization meta-heuristics and their application in various areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. The book is organized into seven main parts, each with a collection of papers on a similar subject. The first part presents new concepts and algorithms based on type-2 fuzzy logic for dynamic parameter adaptation in meta-heuristics. The second part discusses network theory and applications, and includes papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The third part addresses the theory and practice of meta-heuristics in different areas of application, while the fourth part describes diverse fuzzy logic applications in the control area, which can be considered as intelligent controllers. The next two parts explore applications in areas, such as time series prediction, and pattern recognition and new optimization and evolutionary algorithms and their applications respectively. Lastly, the seventh part addresses the design and application of different hybrid intelligent systems.

Computational Neuroscience: Modeling and Applications

Computational Neuroscience: Modeling and Applications

Author: Scott Carter Format: Hardback Release Date: 06/06/2019

Caffe2 Quick Start Guide Modular and scalable deep learning made easy

Caffe2 Quick Start Guide Modular and scalable deep learning made easy

Author: Ashwin Nanjappa Format: Paperback / softback Release Date: 31/05/2019

Build and train scalable neural network models on various platforms by leveraging the power of Caffe2 Key Features Migrate models trained with other deep learning frameworks on Caffe2 Integrate Caffe2 with Android or iOS and implement deep learning models for mobile devices Leverage the distributed capabilities of Caffe2 to build models that scale easily Book DescriptionCaffe2 is a popular deep learning library used for fast and scalable training and inference of deep learning models on various platforms. This book introduces you to the Caffe2 framework and shows how you can leverage its power to build, train, and deploy efficient neural network models at scale. It will cover the topics of installing Caffe2, composing networks using its operators, training models, and deploying models to different architectures. It will also show how to import models from Caffe and from other frameworks using the ONNX interchange format. It covers the topic of deep learning accelerators such as CPU and GPU and shows how to deploy Caffe2 models for inference on accelerators using inference engines. Caffe2 is built for deployment to a diverse set of hardware, using containers on the cloud and resource constrained hardware such as Raspberry Pi, which will be demonstrated. By the end of this book, you will be able to not only compose and train popular neural network models with Caffe2, but also be able to deploy them on accelerators, to the cloud and on resource constrained platforms such as mobile and embedded hardware. What you will learn Build and install Caffe2 Compose neural networks Train neural network on CPU or GPU Import a neural network from Caffe Import deep learning models from other frameworks Deploy models on CPU or GPU accelerators using inference engines Deploy models at the edge and in the cloud Who this book is forData scientists and machine learning engineers who wish to create fast and scalable deep learning models in Caffe2 will find this book to be very useful. Some understanding of the basic machine learning concepts and prior exposure to programming languages like C++ and Python will be useful.

An Introduction to Analytical Fuzzy Plane Geometry

An Introduction to Analytical Fuzzy Plane Geometry

Author: Debdas Ghosh, Debjani Chakraborty Format: Hardback Release Date: 22/05/2019

This book offers a rigorous mathematical analysis of fuzzy geometrical ideas. It demonstrates the use of fuzzy points for interpreting an imprecise location and for representing an imprecise line by a fuzzy line. Further, it shows that a fuzzy circle can be used to represent a circle when its description is not known precisely, and that fuzzy conic sections can be used to describe imprecise conic sections. Moreover, it discusses fundamental notions on fuzzy geometry, including the concepts of fuzzy line segment and fuzzy distance, as well as key fuzzy operations, and includes several diagrams and numerical illustrations to make the topic more understandable. The book fills an important gap in the literature, providing the first comprehensive reference guide on the fuzzy mathematics of imprecise image subsets and imprecise geometrical objects. Mainly intended for researchers active in fuzzy optimization, it also includes chapters relevant for those working on fuzzy image processing and pattern recognition. Furthermore, it is a valuable resource for beginners interested in basic operations on fuzzy numbers, and can be used in university courses on fuzzy geometry, dealing with imprecise locations, imprecise lines, imprecise circles, and imprecise conic sections.