LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Supercomputers

See below for a selection of the latest books from Supercomputers category. Presented with a red border are the Supercomputers books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Supercomputers books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Introduction to Grid Computing

Introduction to Grid Computing

Author: Frederic Magoules, Jie Pan, Kiat-An Tan, Abhinit Kumar Format: Paperback / softback Release Date: 27/09/2019

A Thorough Overview of the Next Generation in Computing Poised to follow in the footsteps of the Internet, grid computing is on the verge of becoming more robust and accessible to the public in the near future. Focusing on this novel, yet already powerful, technology, Introduction to Grid Computing explores state-of-the-art grid projects, core grid technologies, and applications of the grid. After comparing the grid with other distributed systems, the book covers two important aspects of a grid system: scheduling of jobs and resource discovery and monitoring in grid. It then discusses existing and emerging security technologies, such as WS-Security and OGSA security, as well as the functions of grid middleware at a conceptual level. The authors also describe famous grid projects, demonstrate the pricing of European options through the use of the Monte Carlo method on grids, and highlight different parallelization possibilities on the grid. Taking a tutorial approach, this concise book provides a complete introduction to the components of the grid architecture and applications of grid computing. It expertly shows how grid computing can be used in various areas, from computational mechanics to risk management in financial institutions.

Petascale Computing Algorithms and Applications

Petascale Computing Algorithms and Applications

Author: David A. Bader Format: Paperback / softback Release Date: 27/09/2019

Although the highly anticipated petascale computers of the near future will perform at an order of magnitude faster than today's quickest supercomputer, the scaling up of algorithms and applications for this class of computers remains a tough challenge. From scalable algorithm design for massive concurrency toperformance analyses and scientific visualization, Petascale Computing: Algorithms and Applications captures the state of the art in high-performance computing algorithms and applications. Featuring contributions from the world's leading experts in computational science, this edited collection explores the use of petascale computers for solving the most difficult scientific and engineering problems of the current century. Covering a wide range of important topics, the book illustrates how petascale computing can be applied to space and Earth science missions, biological systems, weather prediction, climate science, disasters, black holes, and gamma ray bursts. It details the simulation of multiphysics, cosmological evolution, molecular dynamics, and biomolecules. The book also discusses computational aspects that include the Uintah framework, Enzo code, multithreaded algorithms, petaflops, performance analysis tools, multilevel finite element solvers, finite element code development, Charm++, and the Cactus framework. Supplying petascale tools, programming methodologies, and an eight-page color insert, this volume addresses the challenging problems of developing application codes that can take advantage of the architectural features of the new petascale systems in advance of their first deployment.

Industrial Applications of High-Performance Computing Best Global Practices

Industrial Applications of High-Performance Computing Best Global Practices

Author: Anwar Osseyran Format: Paperback / softback Release Date: 27/09/2019

Industrial Applications of High-Performance Computing: Best Global Practices offers a global overview of high-performance computing (HPC) for industrial applications, along with a discussion of software challenges, business models, access models (e.g., cloud computing), public-private partnerships, simulation and modeling, visualization, big data analysis, and governmental and industrial influence. Featuring the contributions of leading experts from 11 different countries, this authoritative book: Provides a brief history of the development of the supercomputer Describes the supercomputing environments of various government entities in terms of policy and service models Includes a case study section that addresses more subtle and technical aspects of industrial supercomputing Shows how access to supercomputing matters, and how supercomputing can be used to solve large-scale and complex science and engineering problems Emphasizes the need for collaboration between companies, political organizations, government agencies, and entire nations Industrial Applications of High-Performance Computing: Best Global Practices supplies computer engineers and researchers with a state-of-the-art supercomputing reference. This book also keeps policymakers and industrial decision-makers informed about the economic impact of these powerful technological investments.

Computational Methods in Science and Engineering Models, Algorithms, Coding, and Analysis with GNU Fortran

Computational Methods in Science and Engineering Models, Algorithms, Coding, and Analysis with GNU Fortran

This textbook provides an introduction to Scientific Computing and algorithms that help solve computational problems in science and engineering. The book will be designed to serve both professionals and students in the physical sciences and engineering.

Exploring the DataFlow Supercomputing Paradigm Example Algorithms for Selected Applications

Exploring the DataFlow Supercomputing Paradigm Example Algorithms for Selected Applications

Author: Veljko Milutinovic Format: Hardback Release Date: 13/06/2019

This useful text/reference describes the implementation of a varied selection of algorithms in the DataFlow paradigm, highlighting the exciting potential of DataFlow computing for applications in such areas as image understanding, biomedicine, physics simulation, and business. The mapping of additional algorithms onto the DataFlow architecture is also covered in the following Springer titles from the same team: DataFlow Supercomputing Essentials: Research, Development and Education, DataFlow Supercomputing Essentials: Algorithms, Applications and Implementations, and Guide to DataFlow Supercomputing. Topics and Features: introduces a novel method of graph partitioning for large graphs involving the construction of a skeleton graph; describes a cloud-supported web-based integrated development environment that can develop and run programs without DataFlow hardware owned by the user; showcases a new approach for the calculation of the extrema of functions in one dimension, by implementing the Golden Section Search algorithm; reviews algorithms for a DataFlow architecture that uses matrices and vectors as the underlying data structure; presents an algorithm for spherical code design, based on the variable repulsion force method; discusses the implementation of a face recognition application, using the DataFlow paradigm; proposes a method for region of interest-based image segmentation of mammogram images on high-performance reconfigurable DataFlow computers; surveys a diverse range of DataFlow applications in physics simulations, and investigates a DataFlow implementation of a Bitcoin mining algorithm. This unique volume will prove a valuable reference for researchers and programmers of DataFlow computing, and supercomputing in general. Graduate and advanced undergraduate students will also find that the book serves as an ideal supplementary text for courses on Data Mining, Microprocessor Systems, and VLSI Systems.

High Performance Computing in Science and Engineering ' 18 Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2018

High Performance Computing in Science and Engineering ' 18 Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2018

Author: Wolfgang E. Nagel Format: Hardback Release Date: 08/06/2019

This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2018. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe's leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

Introduction to High Performance Computing for Scientists and Engineers, Second Edition

Introduction to High Performance Computing for Scientists and Engineers, Second Edition

This book is a well-recognized and leading guidebook on High Performance Computing for a broad audience of readers from industry and academia. The new edition is completely reorganized and updated to include the latest research in HPC. A new introductory chapter and a new chapter on accelerated computing have been added to the book to keep pace with recent advances.

Contemporary High Performance Computing From Petascale toward Exascale, Volume 3

Contemporary High Performance Computing From Petascale toward Exascale, Volume 3

Author: Jeffrey S. (Oak Ridge National Laboratory, Tennessee, USA) Vetter Format: Hardback Release Date: 14/05/2019

Contemporary High Performance Computing: From Petascale toward Exascale, Volume 3 focuses on the ecosystems surrounding the world's leading centers for high performance computing (HPC). It covers many of the important factors involved in each ecosystem: computer architectures, software, applications, facilities, and sponsors. This third volume will be a continuation of the two previous volumes, and will include other HPC ecosystems using the same chapter outline: description of a flagship system, major application workloads, facilities, and sponsors. Features: Describes many prominent, international systems in HPC from 2015 through 2017 including each system's hardware and software architecture Covers facilities for each system including power and cooling Presents application workloads for each site Discusses historic and projected trends in technology and applications Includes contributions from leading experts Designed for researchers and students in high performance computing, computational science, and related areas, this book provides a valuable guide to the state-of-the art research, trends, and resources in the world of HPC.

Recent Progress in Computational Sciences and Engineering (2 vols)

Recent Progress in Computational Sciences and Engineering (2 vols)

Author: Theodore Simos, George Maroulis Format: Hardback Release Date: 01/05/2019

Designed for introductory parallel computing courses at the advanced undergraduate or beginning graduate level, Elements of Parallel Computing presents the fundamental concepts of parallel computing not from the point of view of hardware, but from a more abstract view of algorithmic and implementation patterns. The aim is to facilitate the teaching of parallel programming by surveying some key algorithmic structures and programming models, together with an abstract representation of the underlying hardware. The presentation is friendly and informal. The content of the book is language neutral, using pseudocode that represents common programming language models. The first five chapters' present core concepts in parallel computing. SIMD, shared memory, and distributed memory machine models are covered, along with a brief discussion of what their execution models look like. The book also discusses decomposition as a fundamental activity in parallel algorithmic design, starting with a naive example, and continuing with a discussion of some key algorithmic structures. Important programming models are presented in depth, as well as important concepts of performance analysis, including work-depth analysis of task graphs, communication analysis of distributed memory algorithms, key performance metrics, and a discussion of barriers to obtaining good performance. The second part of the book presents three case studies that reinforce the concepts of the earlier chapters. One feature of these chapters is to contrast different solutions to the same problem, using select problems that aren't discussed frequently in parallel computing textbooks. They include the Single Source Shortest Path Problem, the Eikonal equation, and a classical computational geometry problem: computation of the two-dimensional convex hull. After presenting the problem and sequential algorithms, each chapter first discusses the sources of parallelism then

Introduction to High Performance Scientific Computing

Introduction to High Performance Scientific Computing

Author: David L. Chopp Format: Paperback / softback Release Date: 30/04/2019

Based on a course developed by the author, Introduction to High Performance Scientific Computing introduces methods for adding parallelism to numerical methods for solving differential equations. It contains exercises and programming projects that facilitate learning as well as examples and discussions based on the C programming language, with additional comments for those already familiar with C . The text provides an overview of concepts and algorithmic techniques for modern scientific computing and is divided into six self-contained parts that can be assembled in any order to create an introductory course using available computer hardware.Part I introduces the C programming language for those not already familiar with programming in a compiled language. Part II describes parallelism on shared memory architectures using OpenMP. Part III details parallelism on computer clusters using MPI for coordinating a computation. Part IV demonstrates the use of graphical programming units (GPUs) to solve problems using the CUDA language for NVIDIA graphics cards. Part V addresses programming on GPUs for non-NVIDIA graphics cards using the OpenCL framework. Finally, Part VI contains a brief discussion of numerical methods and applications, giving the reader an opportunity to test the methods on typical computing problems. Introduction to High Performance Scientific Computing is intended for advanced undergraduate or beginning graduate students who have limited exposure to programming or parallel programming concepts. Extensive knowledge of numerical methods is not assumed. The material can be adapted to the available computational hardware, from OpenMP on simple laptops or desktops to MPI on computer clusters or CUDA and OpenCL for computers containing NVIDIA or other graphics cards. Experienced programmers unfamiliar with parallel programming will benefit from comparing the various methods to determine the type of parallel programming best suited for their application. The book can be used for courses on parallel scientific computing, high performance computing, and numerical methods for parallel computing.

High Performance Computing in Science and Engineering ' 17 Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2017

High Performance Computing in Science and Engineering ' 17 Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2017

Author: Wolfgang E. Nagel Format: Paperback / softback Release Date: 16/03/2019

This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe's leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

Supercomputing 4th Russian Supercomputing Days, RuSCDays 2018, Moscow, Russia, September 24-25, 2018, Revised Selected Papers

Supercomputing 4th Russian Supercomputing Days, RuSCDays 2018, Moscow, Russia, September 24-25, 2018, Revised Selected Papers

Author: Vladimir Voevodin Format: Paperback / softback Release Date: 01/01/2019

This book constitutes the refereed proceedings of the 4th Russian Supercomputing Days, RuSCDays 2018, held in Moscow, Russia, in September 2018.The 59 revised full papers and one revised short paper presented were carefully reviewed and selected from 136 submissions. The papers are organized in topical sections on parallel algorithms; supercomputer simulation; high performance architectures, tools and technologies.