LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Mathematical & statistical software

See below for a selection of the latest books from Mathematical & statistical software category. Presented with a red border are the Mathematical & statistical software books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Mathematical & statistical software books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

R Markdown Cookbook

R Markdown Cookbook

Author: Yihui Xie, Christophe Dervieux, Emily Riederer Format: Hardback Release Date: 10/11/2020

R Markdown is a powerful tool for combining analysis and reporting into the single document in the spirit of literate programming and reproducible research. Since the birth of the rmarkdown package in early 2014, R Markdown has grown substantially from a package that supports a few output formats (such as HTML, PDF, and Word) to an extensive and diverse ecosystem that enables the creation of books, blogs, scientific articles, websites, and more. Due to its rapid success, this ecosystem is hard to learn completely meaning that R Markdown users, from novices to advanced users, likely do not know all that these packages have to offer. The R Markdown Cookbook confronts this gap by showcasing short, practical examples of wide-ranging tips and tricks to get the most out of these tools. After reading this book, you will learn how to: Enhance your R Markdown content with diagrams, citations, and dynamically generated text Streamline your workflow with child documents, code chunk references, and caching Control the formatting and layout with Pandoc markdown syntax or by writing custom HTML and LaTeX templates Utilize chunk options and hooks to fine-tune how your code is processed Switch between different language engineers to seamlessly incorporate python, D3, and more into your analysis

SPSS Statistics For Dummies

SPSS Statistics For Dummies

Author: Keith McCormick, Jesus Salcedo Format: Paperback / softback Release Date: 03/11/2020

The fun and friendly guide to mastering IBM's Statistical Package for the Social Sciences Written by an author team with a combined 45 years of experience using SPSS, this updated guide takes the guesswork out of the subject and helps you get the most out of using the leader in predictive analysis. Covering the latest release and updates to SPSS 25.0, and including over 100 pages of basic statistical theory, it helps you understand the mechanics behind the calculations, perform predictive analysis, produce informative graphs, and more. You'll even dabble in programming as you expand SPSS functionality to suit your specific needs. Master the fundamental mechanics of SPSS Learn how to get data into and out of the program Graph and analyze your data more accurately and efficiently Program SPSS with Command Syntax, Python, and scripts Get ready to start handling data like a pro--with step-by-step instruction and expert advice!

Statistical Signal Processing

Statistical Signal Processing

Author: Swagata Nandi, Debasis Kundu Format: Hardback Release Date: 16/10/2020

This book introduces readers to various signal processing models that have been used in analyzing periodic data, and discusses the statistical and computational methods involved. Signal processing can broadly be considered to be the recovery of information from physical observations. The received signals are usually disturbed by thermal, electrical, atmospheric or intentional interferences, and due to their random nature, statistical techniques play an important role in their analysis. Statistics is also used in the formulation of appropriate models to describe the behavior of systems, the development of appropriate techniques for estimation of model parameters and the assessment of the model performances. Analyzing different real-world data sets to illustrate how different models can be used in practice, and highlighting open problems for future research, the book is a valuable resource for senior undergraduate and graduate students specializing in mathematics or statistics.

A Handbook of Statistical Analyses Using S-PLUS

A Handbook of Statistical Analyses Using S-PLUS

Author: Brian S. Everitt Format: Hardback Release Date: 30/09/2020

Since the first edition of this book was published, S-PLUS has evolved markedly with new methods of analysis, new graphical procedures, and a convenient graphical user interface (GUI). Today, S-PLUS is the statistical software of choice for many applied researchers in disciplines ranging from finance to medicine. Combining the command line language and GUI of S-PLUS now makes this book even more suitable for inexperienced users, students, and anyone without the time, patience, or background needed to wade through the many more advanced manuals and texts on the market. The second edition of A Handbook of Statistical Analyses Using S-Plus has been completely revised to provide an outstanding introduction to the latest version of this powerful software system. Each chapter focuses on a particular statistical technique, applies it to one or more data sets, and shows how to generate the proposed analyses and graphics using S-PLUS. The author explains S-PLUS functions from both the Windows and command-line perspectives and clearly demonstrates how to switch between the two. This handbook provides the perfect vehicle for introducing the exciting possibilities S-PLUS, S-PLUS 2000, and S-PLUS 6 hold for data analysis. All of the data sets used in the text, along with script files giving the command language used in each chapter, are available for download from the Internet at http://www.iop.kcl.ac.uk/iop/Departments/BioComp/splus.shtml

A Handbook of Practicals in Mathematica

A Handbook of Practicals in Mathematica

Author: Amita Sethi Tanvi Format: Hardback Release Date: 30/08/2020

Mathematica is a technical software designed to provide a principle computational environment for millions of innovators, educators, students and other around the world. Mathematica runs on every major operating system, from Macs and Pcs to Linux workstationsl although this book only covers the program running on the Microsoft Window platform. The book provides the graphical vision of many functions of branches of mathematics like Analysis, Differential Equations, Mathematical Modeling, Calculus, etc. The most fundamental innovation is the introduction of dynamic user interface elements with commands Manipulate, through which a user can see the behaviour of the function with change in a given parameter.

Computer Based Numerical and Statistical Techniques

Computer Based Numerical and Statistical Techniques

Author: Rakesh Kumar Format: Paperback / softback Release Date: 11/08/2020

Learn R

Learn R

Author: Pedro J. (University of Helsinki, Faculty of Biological and Environmental Sciences) Aphalo Format: Paperback / softback Release Date: 29/07/2020

Learning a computer language like R can be either frustrating, fun, or boring. Having fun requires challenges that wake up the learner's curiosity but also provide an emotional reward on overcoming them. This book is designed so that it includes smaller and bigger challenges, in what I call playgrounds, in the hope that all readers will enjoy their path to R fluency. Fluency in the use of a language is a skill that is acquired through practice and exploration. Although rarely mentioned separately, fluency in a computer programming language involves both writing and reading. The parallels between natural and computer languages are many, but differences are also important. For students and professionals in the biological sciences, humanities, and many applied fields, recognizing the parallels between R and natural languages should help them feel at home with R. The approach I use is similar to that of a travel guide, encouraging exploration and describing the available alternatives and how to reach them. The intention is to guide the reader through the R landscape of 2020 and beyond. Features R as it is currently used Few prescriptive rules-mostly the author's preferences together with alternatives Explanation of the R grammar emphasizing the R way of doing things Tutoring for programming in the small using scripts The grammar of graphics and the grammar of data described as grammars Examples of data exchange between R and the foreign world using common file formats Coaching for becoming an independent R user, capable of both writing original code and solving future challenges What makes this book different from others: Tries to break the ice and help readers from all disciplines feel at home with R Does not make assumptions about what the reader will use R for Attempts to do only one thing well: guide readers into becoming fluent in the R language Pedro J. Aphalo is a PhD graduate from the University of Edinburgh, and is currently a lecturer at the University of Helsinki. A plant biologist and agriculture scientist with a passion for data, electronics, computers, and photography, in addition to plants, Dr. Aphalo has been a user of R for 25 years. He first organized an R course for MSc students 18 years ago, and is the author of 13 R packages currently in CRAN.

Learn R

Learn R

Learning a computer language like R can be either frustrating, fun, or boring. Having fun requires challenges that wake up the learner's curiosity but also provide an emotional reward on overcoming them. This book is designed so that it includes smaller and bigger challenges, in what I call playgrounds, in the hope that all readers will enjoy their path to R fluency. Fluency in the use of a language is a skill that is acquired through practice and exploration. Although rarely mentioned separately, fluency in a computer programming language involves both writing and reading. The parallels between natural and computer languages are many, but differences are also important. For students and professionals in the biological sciences, humanities, and many applied fields, recognizing the parallels between R and natural languages should help them feel at home with R. The approach I use is similar to that of a travel guide, encouraging exploration and describing the available alternatives and how to reach them. The intention is to guide the reader through the R landscape of 2020 and beyond. Features R as it is currently used Few prescriptive rules-mostly the author's preferences together with alternatives Explanation of the R grammar emphasizing the R way of doing things Tutoring for programming in the small using scripts The grammar of graphics and the grammar of data described as grammars Examples of data exchange between R and the foreign world using common file formats Coaching for becoming an independent R user, capable of both writing original code and solving future challenges What makes this book different from others: Tries to break the ice and help readers from all disciplines feel at home with R Does not make assumptions about what the reader will use R for Attempts to do only one thing well: guide readers into becoming fluent in the R language Pedro J. Aphalo is a PhD graduate from the University of Edinburgh, and is currently a lecturer at the University of Helsinki. A plant biologist and agriculture scientist with a passion for data, electronics, computers, and photography, in addition to plants, Dr. Aphalo has been a user of R for 25 years. He first organized an R course for MSc students 18 years ago, and is the author of 13 R packages currently in CRAN.

An Introduction to Data Analysis in R

An Introduction to Data Analysis in R

Author: Alfonso Zamora Saiz, Carlos Quesada Gonzalez, Lluis Hurtado Gil, Diego Mondejar Ruiz Format: Paperback / softback Release Date: 28/07/2020

This textbook offers an easy-to-follow, practical guide to modern data analysis using the programming language R. The chapters cover topics such as the fundamentals of programming in R, data collection and preprocessing, including web scraping, data visualization, and statistical methods, including multivariate analysis, and feature exercises at the end of each section. The text requires only basic statistics skills, as it strikes a balance between statistical and mathematical understanding and implementation in R, with a special emphasis on reproducible examples and real-world applications. This textbook is primarily intended for undergraduate students of mathematics, statistics, physics, economics, finance and business who are pursuing a career in data analytics. It will be equally valuable for master students of data science and industry professionals who want to conduct data analyses.

Handbook of Parallel Computing and Statistics

Handbook of Parallel Computing and Statistics

Author: Erricos John Kontoghiorghes Format: Paperback / softback Release Date: 30/06/2020

Technological improvements continue to push back the frontier of processor speed in modern computers. Unfortunately, the computational intensity demanded by modern research problems grows even faster. Parallel computing has emerged as the most successful bridge to this computational gap, and many popular solutions have emerged based on its concepts, such as grid computing and massively parallel supercomputers. The Handbook of Parallel Computing and Statistics systematically applies the principles of parallel computing for solving increasingly complex problems in statistics research. This unique reference weaves together the principles and theoretical models of parallel computing with the design, analysis, and application of algorithms for solving statistical problems. After a brief introduction to parallel computing, the book explores the architecture, programming, and computational aspects of parallel processing. Focus then turns to optimization methods followed by statistical applications. These applications include algorithms for predictive modeling, adaptive design, real-time estimation of higher-order moments and cumulants, data mining, econometrics, and Bayesian computation. Expert contributors summarize recent results and explore new directions in these areas. Its intricate combination of theory and practical applications makes the Handbook of Parallel Computing and Statistics an ideal companion for helping solve the abundance of computation-intensive statistical problems arising in a variety of fields.

Data Management Using Stata

Data Management Using Stata

This second edition of Data Management Using Stata focuses on tasks that bridge the gap between raw data and statistical analysis. It has been updated throughout to reflect new data management features that have been added over the last 10 years. Such features include the ability to read and write a wide variety of file formats, the ability to write highly customized Excel files, the ability to have multiple Stata datasets open at once, and the ability to store and manipulate string variables stored as Unicode. Further, this new edition includes a new chapter illustrating how to write Stata programs for solving data management tasks. As in the original edition, the chapters are organized by data management areas: reading and writing datasets, cleaning data, labeling datasets, creating variables, combining datasets, processing observations across subgroups, changing the shape of datasets, and programming for data management. Within each chapter, each section is a self-contained lesson illustrating a particular data management task (for instance, creating date variables or automating error checking) via examples. This modular design allows you to quickly identify and implement the most common data management tasks without having to read background information first. In addition to the nuts and bolts examples, author Michael Mitchell alerts users to common pitfalls (and how to avoid them) and provides strategic data management advice. This book can be used as a quick reference for solving problems as they arise or can be read as a means for learning comprehensive data management skills. New users will appreciate this book as a valuable way to learn data management, while experienced users will find this information to be handy and time saving-there is a good chance that even the experienced user will learn some new tricks.

Statistical Analysis of Network Data with R

Statistical Analysis of Network Data with R

Author: Eric D. Kolaczyk, Gabor Csardi Format: Paperback / softback Release Date: 03/06/2020

The new edition of this book provides an easily accessible introduction to the statistical analysis of network data using R. It has been fully revised and can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. The new edition of this book includes an overhaul to recent changes in igraph. The material in this book is organized to flow from descriptive statistical methods to topics centered on modeling and inference with networks, with the latter separated into two sub-areas, corresponding first to the modeling and inference of networks themselves, and then, to processes on networks. The book begins by covering tools for the manipulation of network data. Next, it addresses visualization and characterization of networks. The book then examines mathematical and statistical network modeling. This is followed by a special case of network modeling wherein the network topology must be inferred. Network processes, both static and dynamic are addressed in the subsequent chapters. The book concludes by featuring chapters on network flows, dynamic networks, and networked experiments. Statistical Analysis of Network Data with R, 2nd Ed. has been written at a level aimed at graduate students and researchers in quantitative disciplines engaged in the statistical analysis of network data, although advanced undergraduates already comfortable with R should find the book fairly accessible as well.