LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Mechanics of solids

See below for a selection of the latest books from Mechanics of solids category. Presented with a red border are the Mechanics of solids books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Mechanics of solids books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Introduction to Engineering Heat Transfer

Introduction to Engineering Heat Transfer

This new text integrates fundamental theory with modern computational tools such as EES, MATLAB (R), and FEHT to equip students with the essential tools for designing and optimizing real-world systems and the skills needed to become effective practicing engineers. Real engineering problems are illustrated and solved in a clear step-by-step manner. Starting from first principles, derivations are tailored to be accessible to undergraduates by separating the formulation and analysis from the solution and exploration steps to encourage a deep and practical understanding. Numerous exercises are provided for homework and self-study and include standard hand calculations as well as more advanced project-focused problems for the practice and application of computational tools. Appendices include reference tables for thermophysical properties and answers to selected homework problems from the book. Complete with an online package of guidance documents on EES, MATLAB (R), and FEHT software, sample code, lecture slides, video tutorials, and a test bank and full solutions manual for instructors, this is an ideal text for undergraduate heat transfer courses and a useful guide for practicing engineers.

Finite Elements for Engineers with ANSYS Applications

Finite Elements for Engineers with ANSYS Applications

Author: Mohamed (University of British Columbia, Vancouver) Gadala Format: Hardback Release Date: 29/02/2020

The finite element method (FEM) is indispensable in modeling and simulation in various engineering and physical systems, including structural analysis, stress, strain, fluid mechanics, heat transfer, dynamics, eigenproblems, design optimization, sound propagation, electromagnetics, and coupled field problems. This textbook integrates basic theory with real-life, design-oriented problems using ANSYS, the most commonly used computational software in the field. For students as well as practicing engineers and designers, each chapter is highly illustrated and presented in a step-by-step manner. Fundamental concepts are presented in detail with reference to easy to understand worked examples that clearly introduce the method before progressing to more advanced content. Included are step-by-step solutions for project type problems using modelling software, special chapters for modelling and the use of ANSYS and Workbench programs, and extensive sets of problems and projects round out each chapter.

Dynamics of Multibody Systems

Dynamics of Multibody Systems

Author: Ahmed (University of Illinois, Chicago) Shabana Format: Hardback Release Date: 31/01/2020

This fully revised fifth edition provides comprehensive coverage of flexible multibody system dynamics. Including an entirely new chapter on the integration of geometry, durability analysis, and design, it offers clear explanations of spatial kinematics, rigid body dynamics, and flexible body dynamics, and uniquely covers the basic formulations used by the industry for analysis, design, and performance evaluation. Included are methods for formulating dynamic equations, the floating frame of reference formulation used in small deformation analysis, and the absolute nodal coordinate formulation used in large deformation analysis, as well as coverage of industry durability investigations. Illustrated with a wealth of examples and practical applications throughout, it is the ideal text for single-semester graduate courses on multibody dynamics taken in departments of aerospace and mechanical engineering, and for researchers and practicing engineers working on a wide variety of flexible multibody systems.

Mechanics of Materials

Mechanics of Materials

Author: Anthony Bedford, Kenneth M. Liechti Format: Hardback Release Date: 28/01/2020

This revised and updated second edition is designed for the first course in mechanics of materials in mechanical, civil and aerospace engineering, engineering mechanics, and general engineering curricula. It provides a review of statics, covering the topics needed to begin the study of mechanics of materials including free-body diagrams, equilibrium, trusses, frames, centroids, and distributed loads. It presents the foundations and applications of mechanics of materials with emphasis on visual analysis, using sequences of figures to explain concepts and giving detailed explanations of the proper use of free-body diagrams. The Cauchy tetrahedron argument is included, which allows determination of the normal and shear stresses on an arbitrary plane for a general state of stress. An optional chapter discusses failure and modern fracture theory, including stress intensity factors and crack growth. Thoroughly classroom tested and enhanced by student and instructor feedback, the book adopts a uniform and systematic approach to problem solving through its strategy, solution, and discussion format in examples. Motivating applications from the various engineering fields, as well as end of chapter problems, are presented throughout the book.

Error Estimates for Advanced Galerkin Methods

Error Estimates for Advanced Galerkin Methods

Author: Marcus Olavi Ruter Format: Hardback Release Date: 28/12/2019

This monograph provides a compendium of established and novel error estimation procedures applied in the field of Computational Mechanics. It also includes detailed derivations of these procedures to offer insights into the concepts used to control the errors obtained from employing Galerkin methods in finite and linearized hyperelasticity. The Galerkin methods introduced are considered advanced methods because they remedy certain shortcomings of the well-established finite element method, which is the archetypal Galerkin (mesh-based) method. In particular, this monograph focuses on the systematical derivation of the shape functions used to construct both Galerkin mesh-based and meshfree methods. The mesh-based methods considered are the (conventional) displacement-based, (dual-)mixed, smoothed, and extended finite element methods. In addition, it introduces the element-free Galerkin and reproducing kernel particle methods as representatives of a class of Galerkin meshfree methods. Including illustrative numerical examples relevant to engineering with an emphasis on elastic fracture mechanics problems, this monograph is intended for students, researchers, and practitioners aiming to increase the reliability of their numerical simulations and wanting to better grasp the concepts of Galerkin methods and associated error estimation procedures.

Continuum Mechanics and Linear Elasticity An Applied Mathematics Introduction

Continuum Mechanics and Linear Elasticity An Applied Mathematics Introduction

Author: Ciprian D. Coman Format: Hardback Release Date: 26/12/2019

This is an intermediate book for beginning postgraduate students and junior researchers, and offers up-to-date content on both continuum mechanics and elasticity. The material is self-contained and should provide readers sufficient working knowledge in both areas. Though the focus is primarily on vector and tensor calculus (the so-called coordinate-free approach), the more traditional index notation is used whenever it is deemed more sensible. With the increasing demand for continuum modeling in such diverse areas as mathematical biology and geology, it is imperative to have various approaches to continuum mechanics and elasticity. This book presents these subjects from an applied mathematics perspective. In particular, it extensively uses linear algebra and vector calculus to develop the fundamentals of both subjects in a way that requires minimal use of coordinates (so that beginning graduate students and junior researchers come to appreciate the power of the tensor notation).

Encyclopedia of Continuum Mechanics

Encyclopedia of Continuum Mechanics

Author: Holm Altenbach Format: Hardback Release Date: 23/12/2019

This Encyclopedia covers the entire science of continuum mechanics including the mechanics of materials and fluids. The encyclopedia comprises mathematical definitions for continuum mechanical modeling, fundamental physical concepts, mechanical modeling methodology, numerical approaches and many fundamental applications. The modelling and analytical techniques are powerful tools in mechanical civil and areospsace engineering, plus in related fields of plasticity, viscoelasticity and rheology. Tensor-based and reference-frame-independent, continuum mechanics has recently found applications in geophysics and materials.

Handbook On Timoshenko-ehrenfest Beam And Uflyand- Mindlin Plate Theories

Handbook On Timoshenko-ehrenfest Beam And Uflyand- Mindlin Plate Theories

Author: Isaac E (Florida Atlantic Univ, Usa) Elishakoff Format: Hardback Release Date: 11/11/2019

The refined theory of beams, which takes into account both rotary inertia and shear deformation, was developed jointly by Timoshenko and Ehrenfest in the years 1911-1912. In over a century since the theory was first articulated, tens of thousands of studies have been performed utilizing this theory in various contexts. Likewise, the generalization of the Timoshenko-Ehrenfest beam theory to plates was given by Uflyand and Mindlin in the years 1948-1951.The importance of these theories stems from the fact that beams and plates are indispensable, and are often occurring elements of every civil, mechanical, ocean, and aerospace structure.Despite a long history and many papers, there is not a single book that summarizes these two celebrated theories. This book is dedicated to closing the existing gap within the literature. It also deals extensively with several controversial topics, namely those of priority, the so-called 'second spectrum' shear coefficient, and other issues, and shows vividly that the above beam and plate theories are unnecessarily overcomplicated.In the spirit of Einstein's dictum, 'Everything should be made as simple as possible but not simpler,' this book works to clarify both the Timoshenko-Ehrenfest beam and Uflyand-Mindlin plate theories, and seeks to articulate everything in the simplest possible language, including their numerous applications.This book is addressed to graduate students, practicing engineers, researchers in their early career, and active scientists who may want to have a different look at the above theories, as well as readers at all levels of their academic or scientific career who want to know the history of the subject. The Timoshenko-Ehrenfest Beam and Uflyand-Mindlin Plate Theories are the key reference works in the study of stocky beams and thick plates that should be given their due and remain important for generations to come, since classical Bernoulli-Euler beam and Kirchhoff-Love theories are applicable for slender beams and thin plates, respectively.

Formeln Und Aufgaben Zur Technischen Mechanik 3 Kinetik, Hydrodynamik

Formeln Und Aufgaben Zur Technischen Mechanik 3 Kinetik, Hydrodynamik

Author: Dietmar Gross, Wolfgang Ehlers, Peter Wriggers, Jorg Schroder Format: Paperback / softback Release Date: 10/11/2019

Die Neuauflage des Buches wurde wiederum deutlich erweitert. Sie enthalt die wichtigsten Formeln und mehr als 200 vollstandig geloeste Aufgaben zur Kinetik und Hydrodynamik. Besonderer Wert wird auf das Finden des Loesungsweges und das Erstellen der Grundgleichungen gelegt. Behandelte Themen sind: Kinematik des Punktes.- Kinetik des Massenpunktes.- Bewegung des Massenpunktsystems.- Kinematik des starren Koerpers.- Kinetik des starren Koerpers.- Stossvorgange.- Schwingungen.- Relativbewegungen.- Prinzipien der Mechanik.- Hydrodynamik.

The Isogeometric Boundary Element Method

The Isogeometric Boundary Element Method

Author: Gernot Beer, Benjamin Marussig, Christian Duenser Format: Hardback Release Date: 22/09/2019

This book discusses the introduction of isogeometric technology to the boundary element method (BEM) in order to establish an improved link between simulation and computer aided design (CAD) that does not require mesh generation. In the isogeometric BEM, non-uniform rational B-splines replace the Lagrange polynomials used in conventional BEM. This may seem a trivial exercise, but if implemented rigorously, it has profound implications for the programming, resulting in software that is extremely user friendly and efficient. The BEM is ideally suited for linking with CAD, as both rely on the definition of objects by boundary representation. The book shows how the isogeometric philosophy can be implemented and how its benefits can be maximised with a minimum of user effort. Using several examples, ranging from potential problems to elasticity, it demonstrates that the isogeometric approach results in a drastic reduction in the number of unknowns and an increase in the quality of the results. In some cases even exact solutions without refinement are possible. The book also presents a number of practical applications, demonstrating that the development is not only of academic interest. It then elegantly addresses heterogeneous and non-linear problems using isogeometric concepts, and tests them on several examples, including a severely non-linear problem in viscous flow. The book makes a significant contribution towards a seamless integration of CAD and simulation, which eliminates the need for tedious mesh generation and provides high-quality results with minimum user intervention and computing.

Stability of Axially Moving Materials

Stability of Axially Moving Materials

Author: Nikolay Banichuk, Alexander Barsuk, Juha Jeronen, Tero Tuovinen Format: Hardback Release Date: 19/09/2019

This book discusses the stability of axially moving materials, which are encountered in process industry applications such as papermaking. A special emphasis is given to analytical and semianalytical approaches. As preliminaries, we consider a variety of problems across mechanics involving bifurcations, allowing to introduce the techniques in a simplified setting. In the main part of the book, the fundamentals of the theory of axially moving materials are presented in a systematic manner, including both elastic and viscoelastic material models, and the connection between the beam and panel models. The issues that arise in formulating boundary conditions specifically for axially moving materials are discussed. Some problems involving axially moving isotropic and orthotropic elastic plates are analyzed. Analytical free-vibration solutions for axially moving strings with and without damping are derived. A simple model for fluid--structure interaction of an axially moving panel is presented in detail. This book is addressed to researchers, industrial specialists and students in the fields of theoretical and applied mechanics, and of applied and computational mathematics.