LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Engineering thermodynamics

See below for a selection of the latest books from Engineering thermodynamics category. Presented with a red border are the Engineering thermodynamics books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Engineering thermodynamics books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Technical Thermodynamics for Engineers Basics and Applications

Technical Thermodynamics for Engineers Basics and Applications

Author: Achim Schmidt Format: Hardback Release Date: 27/06/2019

Thermodynamics is a subject that all engineering students have to face and that most of them treat with great respect. This makes it all the more important to offer a good and easy-to-understand approach to the laws of energy conversion. This is what this textbook is intended to do: It covers the basics of classical technical thermodynamics as they are typically taught at universities: The first and second law of thermodynamics as well as equations of state are explained for idealized and real fluids which are subject to a phase change. Thermodynamic mixtures, e.g. humid air, are treated as well as chemical reactions. Components and thermodynamic cycle that convert energy are presented. The book attaches great importance to drawings and illustrations, which should make it easier to comprehend complex matter. Technical applications and apparatus are presented and explained. Numerous exercises and examples conclude the book and contribute to a better understanding of the theory.

The Newman Lectures on Thermodynamics

The Newman Lectures on Thermodynamics

Prof. Newman is considered one of the great chemical engineers of his time. His reputation derives from his mastery of all phases of the subject matter, his clarity of thought, and his ability to reduce complex problems to their essential core elements. He has been teaching undergraduate and graduate core subject courses at the University of California, Berkeley (UC Berkeley), USA, since joining the faculty in 1966. His method is to write out, in long form, everything he expects to convey to his class on a subject on any given day. He has maintained and updated his lecture notes from notepad to computer throughout his career. This book is an exact reproduction of those notes. The book presents concepts needed to define single- and multi-component systems, starting with the Gibbs function. It helps readers derive concepts of entropy and temperature and the development of material properties of pure substances. It acquaints them with applications of thermodynamics, such as cycles, open systems, and phase transitions, and eventually leads them to concepts of multiple-component systems, in particular, chemical and phase equilibria. It clearly presents all concepts that are necessary for engineers.

Refractory Linings ThermoMechanical Design and Applications

Refractory Linings ThermoMechanical Design and Applications

Author: Charles Schacht Format: Paperback / softback Release Date: 19/06/2019

This work describes the technology necessary to optimize the performance of any refractory lining. It provides an overview of the thermomechanical behaviour and wear of refractory lining systems, and details the structural behaviour of several classical refractory geometries, highlighting the critical regions of each lining system where high stress is most likely to create fractures.

Microscale Flow and Heat Transfer Mathematical Modelling and Flow Physics

Microscale Flow and Heat Transfer Mathematical Modelling and Flow Physics

Author: Amit Agrawal, Hari Mohan Kushwaha, Ravi Sudam Jadhav Format: Hardback Release Date: 14/06/2019

This book covers concepts and the latest developments on microscale flow and heat transfer phenomena involving a gas. The book is organised in two parts: the first part focuses on the fluid flow and heat transfer characteristics of gaseous slip flows. The second part presents modelling of such flows using higher-order continuum transport equations. The Navier-Stokes equations based solution is provided to various problems in the slip regime. Several interesting characteristics of slip flows along with useful empirical correlations are documented in the first part of the book. The examples bring out the failure of the conventional equations to adequately describe various phenomena at the microscale. Thereby the readers are introduced to higher order continuum transport (Burnett and Grad) equations, which can potentially overcome these limitations. A clear and easy to follow step by step derivation of the Burnett and Grad equations (superset of the Navier-Stokes equations) is provided in the second part of the book. Analytical solution of these equations, the latest developments in the field, along with scope for future work in this area are also brought out. Presents characteristics of flow in the slip and transition regimes for a clear understanding of microscale flow problems; Provides a derivation of Navier-Stokes equations from microscopic viewpoint; Features a clear and easy to follow step-by-step approach to derive Burnett and Grad equations; Describes a complete compilation of few known exact solutions of the Burnett and Grad equations, along with a discussion of the solution aided with plots; Introduces the variants of the Navier-Stokes, Burnett and Grad equations, including the recently proposed Onsager-Burnett and O13 moment equations.

Innovative Heat Exchangers

Innovative Heat Exchangers

Author: Hans-Joerg Bart Format: Paperback / softback Release Date: 06/06/2019

This accessible book presents unconventional technologies in heat exchanger design that have the capacity to provide solutions to major concerns within the process and power-generating industries. Demonstrating the advantages and limits of these innovative heat exchangers, it also discusses micro- and nanostructure surfaces and micro-scale equipment, and introduces pillow-plate, helical and expanded metal baffle concepts. It offers step-by-step worked examples, which provide instructions for developing an initial configuration and are supported by clear, detailed drawings and pictures. Various types of heat exchangers are available, and they are widely used in all fields of industry for cooling or heating purposes, including in combustion engines. The market in 2012 was estimated to be U$ 42.7 billion and the global demand for heat exchangers is experiencing an annual growth of about 7.8 %. The market value is expected to reach U$ 57.9 billion in 2016, and approach U$ 78.16 billion in 2020. Providing a valuable introduction to students and researchers, this book offers clear and concise information to thermal engineers, mechanical engineers, process engineers and heat exchanger specialists.

Modeling Phenomena of Flow and Transport in Porous Media

Modeling Phenomena of Flow and Transport in Porous Media

Author: Jacob Bear Format: Paperback / softback Release Date: 06/06/2019

This book presents and discusses the construction of mathematical models that describe phenomena of flow and transport in porous media as encountered in civil and environmental engineering, petroleum and agricultural engineering, as well as chemical and geothermal engineering. The phenomena of transport of extensive quantities, like mass of fluid phases, mass of chemical species dissolved in fluid phases, momentum and energy of the solid matrix and of fluid phases occupying the void space of porous medium domains are encountered in all these disciplines. The book, which can also serve as a text for courses on modeling in these disciplines, starts from first principles and focuses on the construction of well-posed mathematical models that describe all these transport phenomena.

Mass and Energy Balances Basic Principles for Calculation, Design, and Optimization of Macro/Nano Systems

Mass and Energy Balances Basic Principles for Calculation, Design, and Optimization of Macro/Nano Systems

Author: Seyed Ali Ashrafizadeh, Zhongchao Tan Format: Paperback / softback Release Date: 06/06/2019

This textbook introduces students to mass and energy balances and focuses on basic principles for calculation, design, and optimization as they are applied in industrial processes and equipment. While written primarily for undergraduate programs in chemical, energy, mechanical, and environmental engineering, the book can also be used as a reference by technical staff and design engineers interested who are in, and/or need to have basic knowledge of process engineering calculation. Concepts and techniques presented in this volume are highly relevant within many industrial sectors including manufacturing, oil/gas, green and sustainable energy, and power plant design. Drawing on 15 years of teaching experiences, and with a clear understanding of students' interests, the authors have adopted a very accessible writing style that includes many examples and additional citations to research resources from the literature, referenced at the ends of chapters.

CFD Techniques and Thermo-Mechanics Applications

CFD Techniques and Thermo-Mechanics Applications

Author: Zied Driss Format: Paperback / softback Release Date: 04/06/2019

This book focuses on CFD (Computational Fluid Dynamics) techniques and the recent developments and research works in thermo-mechanics applications. It is devoted to the publication of basic and applied studies broadly related to this area. The chapters present the development of numerical methods, computational techniques, and case studies in the thermo-mechanics applications. They offer the fundamental knowledge for using CFD in real thermo-mechanics applications and complex flow problems through new technical approaches. Also, they discuss the steps in the CFD process and provide benefits and issues when using the CFD analysis in understanding of complicated flow phenomena and its use in the design process. The best practices for reducing errors and uncertainties in CFD analysis are also discussed. The presented case studies and development approaches aim to provide the readers, such as engineers and PhD students, the fundamentals of CFD prior to embarking on any real simulation project. Additionally, engineers supporting or being supported by CFD analysts can benefit from this book.

Lattice Boltzmann Method Fundamentals and Engineering Applications with Computer Codes

Lattice Boltzmann Method Fundamentals and Engineering Applications with Computer Codes

Author: A. A. Mohamad Format: Hardback Release Date: 16/05/2019

This book introduces readers to the lattice Boltzmann method (LBM) for solving transport phenomena - flow, heat and mass transfer - in a systematic way. Providing explanatory computer codes throughout the book, the author guides readers through many practical examples, such as: * flow in isothermal and non-isothermal lid-driven cavities; * flow over obstacles; * forced flow through a heated channel; * conjugate forced convection; and * natural convection. Diffusion and advection-diffusion equations are discussed, together with applications and examples, and complete computer codes accompany the sections on single and multi-relaxation-time methods. The codes are written in MatLab. However, the codes are written in a way that can be easily converted to other languages, such as FORTRANm Python, Julia, etc. The codes can also be extended with little effort to multi-phase and multi-physics, provided the physics of the respective problem are known. The second edition of this book adds new chapters, and includes new theory and applications. It discusses a wealth of practical examples, and explains LBM in connection with various engineering topics, especially the transport of mass, momentum, energy and molecular species. This book offers a useful and easy-to-follow guide for readers with some prior experience with advanced mathematics and physics, and will be of interest to all researchers and other readers who wish to learn how to apply LBM to engineering and industrial problems. It can also be used as a textbook for advanced undergraduate or graduate courses on computational transport phenomena

The Modes of Gaseous Combustion

The Modes of Gaseous Combustion

Author: Nickolai M Rubtsov Format: Paperback / softback Release Date: 27/03/2019

This book provides an analysis of contemporary problems in combustion science, namely flame propagation, detonation and heterophaseous combustion based on the works of the author. The current problems in the area of gas combustion, as well as the methods allowing to calculate and estimate limiting conditions of ignition, and flame propagation on the basis of experimental results are considered. The book focuses on the virtually inaccessible works of Russian authors and will be useful for experienced students and qualified scientists in the area of experimental studies of combustion processes.