LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Engineering thermodynamics

See below for a selection of the latest books from Engineering thermodynamics category. Presented with a red border are the Engineering thermodynamics books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Engineering thermodynamics books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Convective Heat Transfer in Porous Media

Convective Heat Transfer in Porous Media

Focussing on heat transfer in porous media, this book covers recent advances in micro/macro scales. Apart from introducing heat flux bifurcation and splitting within porous media, it highlights two-phase flow, nanofluids, wicking and convection in bi-disperse porous media. New methods in modelling heat and transport in porous media such as pore-scale analysis and Lattice-Boltzmann methods are introduced. The book covers related engineering applications such as enhanced geothermal systems, biological tissues, porous burners, solar systems, transpiration cooling in aerospace, heat transfer enhancement and electronic cooling, drying and soil evaporation, foam heat exchangers and energy storage.

A Treatise of Heat and Energy

A Treatise of Heat and Energy

Author: Lin-Shu Wang Format: Hardback Release Date: 17/12/2019

This textbook explains the meaning of heat and work and the definition of energy and energy systems. It describes the constructive role of entropy growth and makes the case that energy matters, but entropy growth matters more. Readers will learn that heat can be transferred, produced, and extracted, and that the understanding of generalized heat extraction will revolutionize the design of future buildings as thermal systems for managing low grade heat and greatly contribute to enhanced efficiency of tomorrow's energy systems and energy ecosystems. Professor Wang presents a coherent theory-structure of thermodynamics and clarifies the meaning of heat and the definition of energy in a manner that is both scientifically rigorous and engaging, and explains contemporary understanding of engineering thermodynamics in continuum of its historical evolution. The textbook reinforces students' grasp of concepts with end-of-chapter problems and provides a historical background of pioneering work by Black, Laplace, Carnot, Joule, Thomson, Clausius, Maxwell, Planck, Gibbs, Poincare and Prigogine. Developed primarily as a core text for graduate students in engineering programs, and as reference for professional engineers, this book maximizes readers' understanding and shines a light on new horizons for our energy future.

Phase Change Material-Based Heat Sinks A Multi-Objective Perspective

Phase Change Material-Based Heat Sinks A Multi-Objective Perspective

Author: Srikanth Rangarajan, C. Balaji Format: Hardback Release Date: 04/12/2019

Phase-change Material based heat sinks and associated optimization remains a topic of great interest, as evident from the increasing number of citations and new applications and miniaturization. Often the multi objective perspective of such heat sinks is ignored. This book introduces the readers to the PCM based heat sinks and Multi objective optimization. The authors have also included interesting in house experimental results on the Rotating heat sinks which is a first of a kind work. Useful to budding thermal researchers and practicing engineers in the field, this book is also a great start for students to understand the cooling applications in electronics and an asset to every library in a technical university. Since this book not only gives a critical review of the state of the art but also presents the authors' own results. The book will encourage, motivate and let the reader consider pursuing a research career in electronic cooling technologies.

Thermodynamics: Basic Principles and Engineering Applications

Thermodynamics: Basic Principles and Engineering Applications

Author: Alan M Whitman Format: Hardback Release Date: 31/10/2019

This textbook is for a one semester introductory course in thermodynamics, primarily for use in a mechanical or aerospace engineering program, although it could also be used in an engineering science curriculum. The book contains a section on the geometry of curves and surfaces, in order to review those parts of calculus that are needed in thermodynamics for interpolation and in discussing thermodynamic equations of state of simple substances. It presents the First Law of Thermodynamics as an equation for the time rate of change of system energy, the same way that Newton's Law of Motion, an equation for the time rate of change of system momentum, is presented in Dynamics. Moreover, this emphasis illustrates the importance of the equation to the study of heat transfer and fluid mechanics. New thermodynamic properties, such as internal energy and entropy, are introduced with a motivating discussion rather than by abstract postulation, and connection is made with kinetic theory. Thermodynamic properties of the vaporizable liquids needed for the solution of practical thermodynamic problems (e.g. water and various refrigerants) are presented in a unique tabular format that is both simple to understand and easy to use. All theoretical discussions throughout the book are accompanied by worked examples illustrating their use in practical devices. These examples of the solution of various kinds of thermodynamic problems are all structured in exactly the same way in order to make, as a result of the repetitions, the solution of new problems easier for students to follow, and ultimately, to produce themselves. Many additional problems are provided, half of them with answers, for students to do on their own.

Fundamentals of Multiphase Heat Transfer and Flow

Fundamentals of Multiphase Heat Transfer and Flow

Author: Amir Faghri, Yuwen Zhang Format: Hardback Release Date: 23/10/2019

This textbook presents a modern treatment of heat and mass transfer in the context of all types of multiphase flows with possibility of phase-changes among solid, liquid and vapor. It serves equally as a textbook for undergraduate senior and graduate students in a wide variety of engineering disciplines including mechanical engineering, chemical engineering, material science and engineering, nuclear engineering, biomedical engineering, and environmental engineering. Multiphase Flows and Heat Transfer can also be used to teach contemporary and novel applications of heat and mass transfer - a topic previously restricted to classic texts, unchanged for five decades. Concepts are reinforced with numerous examples and end-of-chapter problems. A solutions manual and PowerPoint presentation are available to instructors. While the book is designed for students, it is also very useful for practicing engineers working in technical areas related to both macro- and micro-scale systems that emphasize multiphase, multicomponent, and non-conventional geometries with coupled heat and mass transfer and phase change, with the possibility of full numerical simulation.

Fundamentals of Engineering Thermodynamics

Fundamentals of Engineering Thermodynamics

Author: V. Babu Format: Hardback Release Date: 08/10/2019

This book deals with all the concepts in first level Thermodynamics course. Numerous examples are given with the objective of illustrating how the concepts are used for the thermodynamic analysis of devices. Please note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka

Piping Design Handbook

Piping Design Handbook

Author: John J. McKetta Jr Format: Paperback / softback Release Date: 27/09/2019

This encyclopedic volume covers almost every phase of piping design - presenting procedures in a straightforward way.;Written by 82 world experts in the field, the Piping Design Handbook: details the basic principles of piping design; explores pipeline shortcut methods in an in-depth manner; and presents expanded rules of thumb for the piping design engineer.;Generously illustrated with over 1575 figures, display equations, and tables, the Piping Design Handbook is for chemical, mechanical, process, and equipment design engineers.

Refractory Linings ThermoMechanical Design and Applications

Refractory Linings ThermoMechanical Design and Applications

Author: Charles Schacht Format: Paperback / softback Release Date: 27/09/2019

This work describes the technology necessary to optimize the performance of any refractory lining. It provides an overview of the thermomechanical behaviour and wear of refractory lining systems, and details the structural behaviour of several classical refractory geometries, highlighting the critical regions of each lining system where high stress is most likely to create fractures.

Design and Optimization of Thermal Systems, Third Edition with MATLAB Applications

Design and Optimization of Thermal Systems, Third Edition with MATLAB Applications

Author: Yogesh (Rutgers University, Piscataway, New Jersey, USA.) Jaluria Format: Hardback Release Date: 25/09/2019

Design and Optimization of Thermal Systems, Third Edition: with MATLAB (R) Applications provides systematic and efficient approaches to the design of thermal systems, which are of interest in a wide range of applications. It presents basic concepts and procedures for conceptual design, problem formulation, modeling, simulation, design evaluation, achieving feasible design, and optimization. Emphasizing modeling and simulation, with experimentation for physical insight and model validation, the third edition covers the areas of material selection, manufacturability, economic aspects, sensitivity, genetic and gradient search methods, knowledge-based design methodology, uncertainty, and other aspects that arise in practical situations. This edition features many new and revised examples and problems from diverse application areas and more extensive coverage of analysis and simulation with MATLAB (R).

Industrial Heating Principles, Techniques, Materials, Applications, and Design

Industrial Heating Principles, Techniques, Materials, Applications, and Design

Author: Yeshvant V. Deshmukh Format: Paperback / softback Release Date: 05/09/2019

Industry relies on heating for a wide variety of processes involving a broad range of materials. Each process and material requires heating methods suitable to its properties and the desired outcome. Despite this, the literature lacks a general reference on design techniques for heating, especially for small- and medium-sized applications. Industrial Heating: Principles, Techniques, Materials, Applications, and Design fills this gap, presenting design information for both traditional and modern heating processes and auxiliary techniques. The author leverages more than 40 years of experience into this comprehensive, authoritative guide. The book opens with fundamental topics in steady state and transient heat transfer, fluid mechanics, and aerodynamics, emphasizing analytical concepts over mathematical rigor. A discussion of fuels, their combustion, and combustion devices follows, along with waste incineration and its associated problems. The author then examines techniques related to heating, such as vacuum technology, pyrometry, protective atmosphere, and heat exchangers as well as refractory, ceramic, and metallic materials and their advantages and disadvantages. Useful appendices round out the presentation, supplying information on underlying principles such as pressure and thermal diffusivity. Replete with illustrations, examples, and solved problems, Industrial Heating provides a much-needed treatment of all aspects of heating systems, reflecting the advances in both process and technology over the past half-century.

Heat Transfer Enhancement in Externally Finned Tubes and Internally Finned Tubes and Annuli

Heat Transfer Enhancement in Externally Finned Tubes and Internally Finned Tubes and Annuli

Author: Sujoy Kumar Saha, Hrishiraj Ranjan, Madhu Sruthi Emani, Anand Kumar Bharti Format: Paperback / softback Release Date: 12/08/2019

This Brief deals with externally finned tubes, their geometric parameters, Reynolds number, dimensionless variables, friction factor, plain plate fins on round tubes, the effect of fin spacing, correlations, pain individually finned tubes, circular fins with staggered tubes, low integral fin tubes, wavy fin, enhanced plate fin geometries with round tubes, Offset Strip Fins, convex louver fins, louvered fin, perforated fin, mesh fin, vortex generator, enhanced circular fin geometries, spine or segmented fin, wire loop fin, flat extruded tubes with internal membranes, plate and fin automotive radiators, performance comparison, numerical simulation, advanced fin geometries, hydrophilic coatings, internally finned tubes and annuli, spirally fluted and indented tube, advanced internal fin geometries, and finned annuli. The book is ideal for professionals and researchers dealing with thermal management in devices.

Electric Fields, Additives and Simultaneous Heat and Mass Transfer in Heat Transfer Enhancement

Electric Fields, Additives and Simultaneous Heat and Mass Transfer in Heat Transfer Enhancement

Author: Sujoy Kumar Saha, Hrishiraj Ranjan, Madhu Sruthi Emani, Anand Kumar Bharti Format: Paperback / softback Release Date: 31/07/2019

This Brief deals with electrode design and placement, enhancement of both liquid and gas flow, vapor space condensation, in-tube condensation, falling film evaporation, correlations. It further provides a fundamental understanding of boiling and condensation, pool boiling, critical heat flux, convective vaporization, additives for single-phase liquids like solid particles, gas bubbles, suspensions in dilute polymer and surfactant solutions, solid additives and liquid additives for gases, additives for boiling, condensation and absorption, mass transfer resistance in gas phase (condensation with noncondensible gases, evaporation into air, dehumidifying finned tube heat exchangers, water film enhancement of finned tube exchanger), controlling resistance in liquid phase, and significant resistance in both phases. The volume is ideal for professionals and researchers dealing with thermal management in devices.