LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Biosensors

See below for a selection of the latest books from Biosensors category. Presented with a red border are the Biosensors books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Biosensors books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Biosensors Microelectrochemical Devices

Biosensors Microelectrochemical Devices

Author: Marc Lambrechts, Willy Sansen Format: Paperback / softback Release Date: 25/09/2019

Biosensors are analytical devices that combine a biologically sensitive element with a physical or chemical transducer to selectively and quantitatively detect the presence of specific compounds. Balancing basics, principles, and case studies, Biosensors: Microelectrochemical Devices covers the theory and applications of one class of biosensor-microelectrochemical devices. The book clearly explains microelectronic techniques used to produce these cheap, fast reacting, and disposable sensors with the aid of helpful diagrams and tables. Researchers and postgraduates active in the field of chemical sensors, analytical chemistry, or microelectronics will find this an invaluable reference.

Advances in Nanosensors for Biological and Environmental Analysis

Advances in Nanosensors for Biological and Environmental Analysis

Advances in Nanosensors for Biological and Environmental Analysis presents the current state-of-art in nanosensors for biological and environmental analysis, also covering commercial aspects. Broadly, the book provides detailed information on the emergence of different types of nanomaterials as transduction platforms used in the development of nanosensors. These include carbon nanotubes, graphene, 2-D transition metal dichalcogenides, conducting polymers and metal organic frameworks. Additional topics include sections on the way nanosensors have inspired new product development in various types of biological and environmental applications that are currently available and on the horizon.

Super Optical Biosensors

Super Optical Biosensors

Author: Caide (Yunyang Medical College, China) Xiao Format: Hardback Release Date: 16/05/2019

Medical Sensors And Lab-on-a-chip Devices: Mechanisms, Biofunctionalization And Measurement Techniques

Medical Sensors And Lab-on-a-chip Devices: Mechanisms, Biofunctionalization And Measurement Techniques

Author: Vinod Kumar Khanna Format: Hardback Release Date: 18/04/2018

This book provides a comprehensive coverage of sensor and lab-on-a-chip technologies for medical applications. Presenting a unified coverage of the operational principles and fabrication issues of the sensors and related chips, this important compendium describes the contemporary electronic devices that help to identify and effectively combat different diseases and malfunctions of the human body. It is intended to serve as an essential textbook or reference book for graduate/postgraduate students in electrical and electronic engineering, biomedical engineering, and those pursuing a course on sensor technologies in medicine. Research students and scientists too will find the self-explanatory diagrams and end-of-chapter bibliographies very useful.

Biosensors for Security and Bioterrorism Applications

Biosensors for Security and Bioterrorism Applications

Author: Dimitrios P. Nikolelis Format: Hardback Release Date: 13/03/2016

This book offers comprehensive coverage of biomarker/biosensor interactions for the rapid detection of weapons of bioterrorism, as well as current research trends and future developments and applications. It will be useful to researchers in this field who are interested in new developments in the early detection of such. The authors have collected very valuable and, in some aspects indispensable experience in the area i.e. in the development and application of portable biosensors for the detection of potential hazards. Most efforts are centered on the development of immunochemical assays including flow-lateral systems and engineered antibodies and their fragments. In addition, new approaches to the detection of enzyme inhibitors, direct enzymatic and microbial detection of metabolites and nutrients are elaborated. Some realized prototypes and concept devices applicable for the further use as a basis for the cooperation programs are also discussed.There is a particular focus on electrochemical and optical detection systems,including those employing carbon nanotubes, quantum dots and metalnanoparticles. The authors are well-known scientists and most of them are editors of respected international scientific journals. Although recently developed biosensors utilize known principles, the biosensing devices described can significantly shorten the time required for successful detection and enhance efforts in more time-consuming directions, e.g. remote sensing systems and validation in real-sample analysis.The authors describe advances in all stages of biosensor development: theselection of biochemical components, their use in biosensor assembly, detection principles and improvements and applications for real sample assays.

Biosensors and Bioelectronics

Biosensors and Bioelectronics

Biosensors and Bioelectronics presents the rapidly evolving methodologies that are relevant to biosensors and bioelectronics fabrication and characterization. The book provides a comprehensive understanding of biosensor functionality, and is an interdisciplinary reference that includes a range of interwoven contributing subjects, including electrochemistry, nanoparticles, and conducting polymers. Authored by a team of bioinstrumentation experts, this book serves as a blueprint for performing advanced fabrication and characterization of sensor systems-arming readers with an application-based reference that enriches the implementation of the most advanced technologies in the field.

Nanoimprint Biosensors The Fusion of Nanofabrication, Nanophotonics, and Nanobiology

Nanoimprint Biosensors The Fusion of Nanofabrication, Nanophotonics, and Nanobiology

Author: Takeo (OMRON Corporation, Kyoto, Japan) Nishikawa Format: Hardback Release Date: 22/05/2015

This book starts with an overview and introduction on the trends in nanofabrication and nanoimprint technology, followed by a detailed discussion on the design, fabrication, and evaluation of nanoimprint biosensors. The proto-model systems and some application examples of this sensor are also included in the chapters. The book will appeal to anyone in the field of nanotechnology, especially nanofabrication, nanophotonics, and nanobiology, or biosensor research.

Electrochemical Biosensors

Electrochemical Biosensors

Author: Serge (Universite Joseph Fourier, Grenoble Cedex, France) Cosnier Format: Hardback Release Date: 26/01/2015

Since four decades, rapid detection and monitoring in clinical and food diagnostics and in environmental and biodefense have paved the way for the elaboration of electrochemical biosensors. Thanks to their adaptability, ease of use in relatively complex samples, and their portability, electrochemical biosensors now are one of the mainstays of analytical chemistry. In particular, electrochemistry has played a pivotal role in the development of transduction methods for biological processes and biosensors. In parallel, the explosion of activity in nanoscience and nanotechnology and their huge success have profoundly affected biosensor technology, opening new avenues of research for electrode materials and transduction. This book provides an overview of biosensors based on amperometry, conductimetry, potentiometry, square-wave voltammetry, impedance, and electrochemiluminescence and describes the use of ultramicroelectrodes for the real-time monitoring and understanding of exocytosis. Areas of particular interest are the use of silver and gold nanoparticles for signal amplification, photocurrent transduction, and aptamer design. Moreover, advanced insights in the innovative concept of self-powered biosensors derived from biofuel cells are also discussed.

Biosensors Nanotechnology

Biosensors Nanotechnology

Author: Ashutosh Tiwari Format: Hardback Release Date: 11/07/2014

This book provides detailed reviews of a range of nanostructures used in the construction of biosensors as well as the applications of these biosensor nanotechnologies in the biological, chemical, and environmental monitoring fields Biological sensing is a fundamental tool for understanding living systems, but also finds practical application in medicine, drug discovery, process control, food safety, environmental monitoring, defense, and personal security. Moreover, a deeper understanding of the bio/electronic interface leads us towards new horizons in areas such as bionics, power generation, and computing. Advances in telecommunications, expert systems, and distributed diagnostics prompt us to question the current ways we deliver healthcare, while robust industrial sensors enable new paradigms in R&D and production. Despite these advances, there is a glaring absence of suitably robust and convenient sensors for body chemistries. This book examines some of the emerging technologies that are fueling scientific discovery and underpinning new products to enhance the length and quality of our lives. The 14 chapters written by leading experts cover such topics as: * ZnO and graphene microelectrode applications in biosensing * Assembly of polymers/metal nanoparticles * Gold nanoparticle-based electrochemical biosensors * Impedimetric DNA sensing employing nanomaterials * Graphene and carbon nanotube-based biosensors * Computational nanochemistry study of the BFPF green fluorescent protein chromophore * Biosynthesis of metal nanoparticles * Bioconjugated-nanoporous gold films in electrochemical biosensors * The combination of molecular imprinting and nanotechnology * Principles and properties of multiferroics and ceramics

Biological Identification DNA Amplification and Sequencing, Optical Sensing, Lab-On-Chip and Portable Systems

Biological Identification DNA Amplification and Sequencing, Optical Sensing, Lab-On-Chip and Portable Systems

Author: R. Paul (GenArraytion Inc., USA) Schaudies Format: Hardback Release Date: 07/05/2014

Biological Identification provides a detailed review of, and potential future developments in, the technologies available to counter the threats to life and health posed by natural pathogens, toxins, and bioterrorism agents. Biological identification systems must be fast, accurate, reliable, and easy to use. It is also important to employ the most suitable technology in dealing with any particular threat. This book covers the fundamentals of these vital systems and lays out possible advances in the technology. Part one covers the essentials of DNA and RNA sequencing for the identification of pathogens, including next generation sequencing (NGS), polymerase chain reaction (PCR) methods, isothermal amplification, and bead array technologies. Part two addresses a variety of approaches to making identification systems portable, tackling the special requirements of smaller, mobile systems in fluid movement, power usage, and sample preparation. Part three focuses on a range of optical methods and their advantages. Finally, part four describes a unique approach to sample preparation and a promising approach to identification using mass spectroscopy. Biological Identification is a useful resource for academics and engineers involved in the microelectronics and sensors industry, and for companies, medical organizations and military bodies looking for biodetection solutions.

Sensor Technology in Neuroscience

Sensor Technology in Neuroscience

Author: Michael Thompson, Larisa-Emilia Cheran, Saman Sadeghi Format: Hardback Release Date: 14/08/2013

Biosensor technology has rapidly expanded into a wide variety of applications in the last few years. Such fields include clinical diagnostics, environmental chemistry, drug discovery and pathogen detection, to name but a few. The structure of these sensors is based on the intimate combination of a biological entity with a transducer capable of generating an electrical signal to provide information on the biological system being studied. Until now there has been a limited treatment of the study of whole cells (as a biological component) due to the difficulty in connecting transducers to cell populations. This book focuses on several aspects of neural behaviour both in vitro and in vivo, and for the first time, the detection of populations of neurons (rather than single cells) will be presented. The fundamental behaviour and characterization of neurons on various substrates, using a variety of electronic devices such as transistors and microelectrode arrays will be discussed. Future perspectives discussed in the book include artificial intelligence using biological neural networks and nanoneuromedicine. The authors have considerable experience in biosensor technology, and have pioneered the study of neural populations using biosensors in collaboration with neurophysiologists and neuroendrocrinologists. This book will be invaluable to university neuroscience and analytical chemistry departments and students, academics and physicians will benefit from its accessible style and format.

Neuromorphic Olfaction

Neuromorphic Olfaction

Author: Krishna C. Persaud Format: Hardback Release Date: 23/04/2013

Many advances have been made in the last decade in the understanding of the computational principles underlying olfactory system functioning. Neuromorphic Olfaction is a collaboration among European researchers who, through NEUROCHEM (Fp7-Grant Agreement Number 216916)-a challenging and innovative European-funded project-introduce novel computing paradigms and biomimetic artifacts for chemical sensing. The implications of these findings are relevant to a wide audience, including researchers in artifical olfaction, neuroscientists, physiologists, and scientists working with chemical sensors. Developing neuromorphic olfaction from conceptual points of view to practical applications, this cross-disciplinary book examines: The biological components of vertebrate and invertebrate chemical sensing systems The early coding pathways in the biological olfactory system, showing how nonspecific receptor populations may have significant advantages in encoding odor intensity as well as odor identity The redundancy and the massive convergence of the olfactory receptor neurons to the olfactory bulb A neuromorphic approach to artificial olfaction in robots Reactive and cognitive search strategies for olfactory robots The implementation of a computational model of the mammalian olfactory system The book's primary focus is on translating aspects of olfaction into computationally practical algorithms. These algorithms can help us understand the underlying behavior of the chemical senses in biological systems. They can also be translated into practical applications, such as robotic navigation and systems for uniquely detecting chemical species in a complex background.