LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Maths for engineers

See below for a selection of the latest books from Maths for engineers category. Presented with a red border are the Maths for engineers books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Maths for engineers books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Modern Engineering Mathematics

Modern Engineering Mathematics

Author: Glyn James, Phil Dyke Format: Paperback / softback Release Date: 28/02/2020

For first-year undergraduate modules in Engineering Mathematics. Develop understanding and maths skills within an engineering context Modern Engineering Mathematics, 6th Edition by Professors Glyn James and Phil Dyke, draws on the teaching experience and knowledge of three co-authors, Matthew Craven, John Searl and Yinghui Wei, to provide a comprehensive course textbook explaining the mathematics required for studying first-year engineering. No matter which field of engineering you will go on to study, this text provides a grounding of core mathematical concepts illustrated with a range of engineering applications. Its other hallmark features include its clear explanations and writing style, and the inclusion of hundreds of fully worked examples and exercises which demonstrate the methods and uses of mathematics in the real world. Woven into the text throughout, the authors put concepts into an engineering context, showing you the relevance of mathematical techniques and helping you to gain a fuller appreciation of how to apply them in your studies and future career. Also available with MyLab Math MyLab (TM) is the teaching and learning platform that empowers you to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. MyLab Math for this textbook has over 1150 questions to assign to your students, including exercises requiring different types of mathematics applications for a variety of industry types. Learn more about MyLab Math. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math search for: 129233536X / 9781292335360 Modern Engineering Mathematics 6th Edition plus MyLab Math with eText -- Access Card Package Package consists of: 1292253495 / 9781292253497 Modern Engineering Mathematics 6th Edition 1292253525 / 9781292253527 MyLab Math with Pearson eText -- Access Card -- for Modern Engineering Mathematics 6th Edition Pearson, the world's learning company.

Emerging Applications of Differential Equations and Game Theory

Emerging Applications of Differential Equations and Game Theory

Author: Surma Zeynep Alparslan Goek Format: Hardback Release Date: 30/11/2019

Branches of mathematics and advanced mathematical algorithms can help solve daily problems throughout various fields of applied sciences. Domains like economics, mechanical engineering, and multi-person decision making benefit from the inclusion of mathematics to maximize utility and cooperation across disciplines. There is a need for studies seeking to understand the theories and practice of using differential mathematics to increase efficiency and order in the modern world. Emerging Applications of Differential Equations and Game Theory is a collection of innovative research that examines the recent advancements on interdisciplinary areas of applied mathematics. While highlighting topics such as artificial neuron networks, stochastic optimization, and dynamical systems, this publication is ideally designed for engineers, cryptologists, economists, computer scientists, business managers, mathematicians, mechanics, academicians, researchers, and students.

Graduate Engineering Mathematics

Graduate Engineering Mathematics

Author: VBK Vatti Format: Paperback / softback Release Date: 30/11/2019

Graduate Engineering Mathematics is designed primarily as a textbook for the students of engineering and physical sciences. This book introduces concepts of mathematics such as Linear Algebra and Calculus, Numerical Methods, Series, Differential Equations, Transforms, Complex Analysis, Statistics, Probability and Linear Programming. This book will also be useful as a reference text to engineers and scientists. The book has seven parts comprising a total of 25 chapters. It contains as many as 644 worked examples and more than 1250 exercise problems with answers. Salient Features: Simple and systematic presentation of concepts. Large number of worked examples to reinforce the concepts. Clear exposition of the mathematical concepts. Exercises at the end of each chapter with answers.

Singular Differential Equations and Special Functions

Singular Differential Equations and Special Functions

Author: Luis Manuel (University of Lisbon, Portugal) Braga da Costa Campos Format: Hardback Release Date: 22/11/2019

Singular Differential Equations and Special Functions is the fifth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fifth book consists of one chapter (chapter 9 of the set). The chapter starts with general classes of differential equations and simultaneous systems for which the properties of the solutions can be established 'a priori', such as existence and unicity of solution, robustness and uniformity with regard to changes in boundary conditions and parameters, and stability and asymptotic behavior. The book proceeds to consider the most important class of linear differential equations with variable coefficients, that can be analytic functions or have regular or irregular singularities. The solution of singular differential equations by means of (i) power series; (ii) parametric integral transforms; and (iii) continued fractions lead to more than 20 special functions; among these is given greater attention to generalized circular, hyperbolic, Airy, Bessel and hypergeometric differential equations, and the special functions that specify their solutions. Includes existence, unicity, robustness, uniformity, and other theorems for non-linear differential equations Discusses properties of dynamical systems derived from the differential equations describing them, using methods such as Liapunov functions Includes linear differential equations with periodic coefficients, including Floquet theory, Hill infinite determinants and multiple parametric resonance Details theory of the generalized Bessel differential equation, and of the generalized, Gaussian, confluent and extended hypergeometric functions and relations with other 20 special functions Examines Linear Differential Equations with analytic coefficients or regular or irregular singularities, and solutions via power series, parametric integral transforms, and continued fractions

Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-Volume Set

Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-Volume Set

Author: Luis Manuel (University of Lisbon, Portugal) Braga da Costa Campos Format: Hardback Release Date: 22/11/2019

Volume IV of the series Mathematics and Physics Applied to Science and Technology, this comprehensive six-book set covers: Linear Differential Equations and Oscillators Non-linear Differential Equations and Dynamical Systems Higher-order Differential Equations and Elasticity Simultaneous Systems of Differential Equations and Multi-dimensional Oscillators Singular Differential Equations and Special Functions Classification and Examples of Differential Equations and their Applications

Simultaneous Systems of Differential Equations and Multi-Dimensional Vibrations

Simultaneous Systems of Differential Equations and Multi-Dimensional Vibrations

Author: Luis Manuel (University of Lisbon, Portugal) Braga da Costa Campos Format: Hardback Release Date: 22/11/2019

Simultaneous Differential Equations and Multi-Dimensional Vibrations is the fourth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fourth book consists of two chapters (chapters 7 and 8 of the set). The first chapter concerns simultaneous systems of ordinary differential equations and focuses mostly on the cases that have a matrix of characteristic polynomials, namely linear systems with constant or homogeneous power coefficients. The method of the matrix of characteristic polynomials also applies to simultaneous systems of linear finite difference equations with constant coefficients. The second chapter considers linear multi-dimensional oscillators with any number of degrees of freedom including damping, forcing, and multiple resonance. The discrete oscillators may be extended from a finite number of degrees-of-freedom to infinite chains. The continuous oscillators correspond to waves in homogeneous or inhomogeneous media, including elastic, acoustic, electromagnetic, and water surface waves. The combination of propagation and dissipation leads to the equations of mathematical physics. Presents simultaneous systems of ordinary differential equations and their elimination for a single ordinary differential equation Includes cases with a matrix of characteristic polynomials, including simultaneous systems of linear differential and finite difference equations with constant coefficients Covers multi-dimensional oscillators with damping and forcing, including modal decomposition, natural frequencies and coordinates, and multiple resonance Discusses waves in inhomogeneous media, such as elastic, electromagnetic, acoustic, and water waves Includes solutions of partial differential equations of mathematical physics by separation of variables leading to ordinary differential equations

Classification and Examples of Differential Equations and their Applications

Classification and Examples of Differential Equations and their Applications

Author: Luis Manuel (University of Lisbon, Portugal) Braga da Costa Campos Format: Hardback Release Date: 22/11/2019

Classification and Examples of Differential Equations and their Applications is the sixth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This sixth book consists of one chapter (chapter 10 of the set). It contains 20 examples related to the preceding five books and chapters 1 to 9 of the set. It includes two recollections: the first with a classification of differential equations into 500 standards and the second with a list of 500 applications. The ordinary differential equations are classified in 500 standards concerning methods of solution and related properties, including: (i) linear differential equations with constant or homogeneous coefficients and finite difference equations; (ii) linear and non-linear single differential equations and simultaneous systems; (iii) existence, unicity and other properties; (iv) derivation of general, particular, special, analytic, regular, irregular, and normal integrals; (v) linear differential equations with variable coefficients including known and new special functions. The theory of differential equations is applied to the detailed solution of 500 physical and engineering problems including: (i) one- and multidimensional oscillators, with damping or amplification, with non-resonant or resonant forcing; (ii) single, non-linear, and parametric resonance; (iii) bifurcations and chaotic dynamical systems; (iv) longitudinal and transversal deformations and buckling of bars, beams, and plates; (v) trajectories of particles; (vi) oscillations and waves in non-uniform media, ducts, and wave guides. Provides detailed solution of examples of differential equations of the types covered in tomes l-5 of the set (Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six -volume Set) Includes physical and engineering problems that extend those presented in the tomes 1-6 (Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set) Includes a classification of ordinary differential equations and their properties into 500 standards that can serve as a look-up table of methods of solution Covers a recollection of 500 physical and engineering problems and sub-cases that involve the solution of differential equations Presents the problems used as examples including formulation, solution, and interpretation of results

Higher-Order Differential Equations and Elasticity

Higher-Order Differential Equations and Elasticity

Author: Luis Manuel (University of Lisbon, Portugal) Braga da Costa Campos Format: Hardback Release Date: 20/11/2019

Higher-Order Differential Equations and Elasticity is the third book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This third book consists of two chapters (chapters 5 and 6 of the set). The first chapter in this book concerns non-linear differential equations of the second and higher orders. It also considers special differential equations with solutions like envelopes not included in the general integral. The methods presented include special differential equations, whose solutions include the general integral and special integrals not included in the general integral for myriad constants of integration. The methods presented include dual variables and differentials, related by Legendre transforms, that have application in thermodynamics. The second chapter concerns deformations of one (two) dimensional elastic bodies that are specified by differential equations of: (i) the second-order for non-stiff bodies like elastic strings (membranes); (ii) fourth-order for stiff bodies like bars and beams (plates). The differential equations are linear for small deformations and gradients and non-linear otherwise. The deformations for beams include bending by transverse loads and buckling by axial loads. Buckling and bending couple non-linearly for plates. The deformations depend on material properties, for example isotropic or anisotropic elastic plates, with intermediate cases such as orthotropic or pseudo-isotropic. Discusses differential equations having special integrals not contained in the general integral, like the envelope of a family of integral curves Presents differential equations of the second and higher order, including non-linear and with variable coefficients Compares relation of differentials with the principles of thermodynamics Describes deformations of non-stiff elastic bodies like strings and membranes and buckling of stiff elastic bodies like bars, beams, and plates Presents linear and non-linear waves in elastic strings, membranes, bars, beams, and plates

Non-Linear Differential Equations and Dynamical Systems

Non-Linear Differential Equations and Dynamical Systems

Author: Luis Manuel (University of Lisbon, Portugal) Braga da Costa Campos Format: Hardback Release Date: 20/11/2019

Non-Linear Differential Equations and Dynamical Systems is the second book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This second book consists of two chapters (chapters 3 and 4 of the set). The first chapter considers non-linear differential equations of first order, including variable coefficients. A first-order differential equation is equivalent to a first-order differential in two variables. The differentials of order higher than the first and with more than two variables are also considered. The applications include the representation of vector fields by potentials. The second chapter in the book starts with linear oscillators with coefficients varying with time, including parametric resonance. It proceeds to non-linear oscillators including non-linear resonance, amplitude jumps, and hysteresis. The non-linear restoring and friction forces also apply to electromechanical dynamos. These are examples of dynamical systems with bifurcations that may lead to chaotic motions. Presents general first-order differential equations including non-linear like the Ricatti equation Discusses differentials of the first or higher order in two or more variables Includes discretization of differential equations as finite difference equations Describes parametric resonance of linear time dependent oscillators specified by the Mathieu functions and other methods Examines non-linear oscillations and damping of dynamical systems including bifurcations and chaotic motions

Linear Differential Equations and Oscillators

Linear Differential Equations and Oscillators

Author: Luis Manuel (University of Lisbon, Portugal) Braga da Costa Campos Format: Hardback Release Date: 20/11/2019

Linear Differential Equations and Oscillators is the first book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This first book consists of chapters 1 and 2 of the fourth volume. The first chapter covers linear differential equations of any order whose unforced solution can be obtained from the roots of a characteristic polynomial, namely those: (i) with constant coefficients; (ii) with homogeneous power coefficients with the exponent equal to the order of derivation. The method of characteristic polynomials is also applied to (iii) linear finite difference equations of any order with constant coefficients. The unforced and forced solutions of (i,ii,iii) are examples of some general properties of ordinary differential equations. The second chapter applies the theory of the first chapter to linear second-order oscillators with one degree-of-freedom, such as the mechanical mass-damper-spring-force system and the electrical self-resistor-capacitor-battery circuit. In both cases are treated free undamped, damped, and amplified oscillations; also forced oscillations including beats, resonance, discrete and continuous spectra, and impulsive inputs. Describes general properties of differential and finite difference equations, with focus on linear equations and constant and some power coefficients Presents particular and general solutions for all cases of differential and finite difference equations Provides complete solutions for many cases of forcing including resonant cases Discusses applications to linear second-order mechanical and electrical oscillators with damping Provides solutions with forcing including resonance using the characteristic polynomial, Green' s functions, trigonometrical series, Fourier integrals and Laplace transforms

ASA-SIAM Series on Statistics and Applied Probability Design and Analysis of Gauge R and R Studies: Making Decisions with Confidence Intervals in Random and Mixed ANOVA Models

ASA-SIAM Series on Statistics and Applied Probability Design and Analysis of Gauge R and R Studies: Making Decisions with Confidence Intervals in Random and Mixed ANOVA Models

This book provides a protocol for conducting gauge repeatability and reproducibility (R&R) experiments. Such an experiment is required whenever a new test system is developed to monitor a manufacturing process. The protocol presented here is used to determine if the testing system is capable of monitoring the manufacturing process with the desired level of accuracy and precision. This protocol is not currently available in other books or technical reports. In addition to providing a protocol for testing a measurement system, the book presents an up-to-date summary of methods used to construct confidence intervals in normal-based random and mixed analysis of variance (ANOVA) models. Thus, this comprehensive book will be useful to scientists in all fields of application who wish to construct interval estimates for ANOVA model parameters. It includes approaches that can be applied to any ANOVA model.

Textbook of Finite Element Analysis

Textbook of Finite Element Analysis

Author: P. Seshu Format: Paperback / softback Release Date: 13/11/2019