LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Statistical physics

See below for a selection of the latest books from Statistical physics category. Presented with a red border are the Statistical physics books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Statistical physics books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Elements of Classical and Quantum Integrable Systems

Elements of Classical and Quantum Integrable Systems

Author: Gleb Arutyunov Format: Hardback Release Date: 20/09/2019

Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.

Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems Using the Methods of Stochastic Processes

Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems Using the Methods of Stochastic Processes

Author: M. Reza Rahimi Tabar Format: Hardback Release Date: 07/09/2019

This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term non-parametrically exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.

Foundations of Classical Mechanics

Foundations of Classical Mechanics

Author: P C Deshmukh Format: Hardback Release Date: 31/08/2019

Sturge's Statistical and Thermal Physics, Second Edition

Sturge's Statistical and Thermal Physics, Second Edition

Author: Jeffrey Olafsen Format: Hardback Release Date: 23/07/2019

The original work by M.D. Sturge has been updated and expanded to include new chapters covering non-equilibrium and biological systems. This second edition re-organizes the material in a more natural manner into four parts that continues to assume no previous knowledge of thermodynamics. The four divisions of the material introduce the subject inductively and rigorously, beginning with key concepts of equilibrium thermodynamics such as heat, temperature and entropy. The second division focuses on the fundamentals of modern thermodynamics: free energy, chemical potential and the partition function. The second half of the book is then designed with the flexibility to meet the needs of both the instructor and the students, with a third section focused on the different types of gases: ideal, Fermi-Dirac, Bose-Einstein, Black Body Radiation and the Photon gases. In the fourth and final division of the book, modern thermostatistical applications are addressed: semiconductors, phase transitions, transport processes, and finally the new chapters on non-equilibrium and biological systems. Key Features: Provides the most readable, thorough introduction to statistical physics and thermodynamics, with magnetic, atomic, and electrical systems addressed alongside development of fundamental topics at a non-rigorous mathematical level Includes brand-new chapters on biological and chemical systems and non-equilibrium thermodynamics, as well as extensive new examples from soft condensed matter and correction of typos from the prior edition Incorporates new numerical and simulation exercises throughout the book Adds more worked examples, problems, and exercises

Self-Organised Criticality Theory, Models and Characterisation

Self-Organised Criticality Theory, Models and Characterisation

Giving a detailed overview of the subject, this book takes in the results and methods that have arisen since the term 'self-organised criticality' was coined twenty years ago. Providing an overview of numerical and analytical methods, from their theoretical foundation to the actual application and implementation, the book is an easy access point to important results and sophisticated methods. Starting with the famous Bak-Tang-Wiesenfeld sandpile, ten key models are carefully defined, together with their results and applications. Comprehensive tables of numerical results are collected in one volume for the first time, making the information readily accessible to readers. Written for graduate students and practising researchers in a range of disciplines, from physics and mathematics to biology, sociology, finance, medicine and engineering, the book gives a practical, hands-on approach throughout. Methods and results are applied in ways that will relate to the reader's own research.

Dynamical Processes on Complex Networks

Dynamical Processes on Complex Networks

Author: Alessandro Vespignani, Alain Barrat, Marc Barthelemy Format: Paperback / softback Release Date: 22/06/2019

The availability of large data sets has allowed researchers to uncover complex properties such as large-scale fluctuations and heterogeneities in many networks, leading to the breakdown of standard theoretical frameworks and models. Until recently these systems were considered as haphazard sets of points and connections. Recent advances have generated a vigorous research effort in understanding the effect of complex connectivity patterns on dynamical phenomena. This book presents a comprehensive account of these effects. A vast number of systems, from the brain to ecosystems, power grids and the internet, can be represented as large complex networks. This book will interest graduate students and researchers in many disciplines, from physics and statistical mechanics to mathematical biology and information science. Its modular approach allows readers to readily access the sections of most interest to them, and complicated maths is avoided so the text can be easily followed by non-experts in the subject.

Works on the Foundations of Statistical Physics

Works on the Foundations of Statistical Physics

Author: Nikolai Sergeevich Krylov Format: Hardback Release Date: 20/06/2019

Initially published in Moscow in 1950 following the author's death, this book contains the first chapters of a large monograph Krylov planned entitled The foundations of physical statistics, his doctoral thesis on The processes of relaxation of statistical systems and the criterion of mechanical instability, and a small paper entitled On the description of exhaustively complete experiments. Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Principles Of Classical Thermodynamics: Applied To Materials Science

Principles Of Classical Thermodynamics: Applied To Materials Science

Author: Didier (Univ Of California, Berkeley, Usa) De Fontaine Format: Hardback Release Date: 18/06/2019

The aim of this book is to present Classical Thermodynamics in a unified way, from the most fundamental principles to non-uniform systems, thereby requiring the introduction of coarse graining methods, leading for instance to phase field methods. Solutions thermodynamics and temperature-concentration phase diagrams are covered, plus also a brief introduction to statistical thermodynamics and topological disorder. The Landau theory is included along with a general treatment of multicomponent instabilities in various types of thermodynamic applications, including phase separation and order-disorder transitions. Nucleation theory and spinodal decomposition are presented as extreme cases of a single approach involving the all-important role of fluctuations.In this way, it is hoped that this coverage will reconcile in a unified manner techniques generally presented separately in physics and materials texts.

11th Chaotic Modeling and Simulation International Conference

11th Chaotic Modeling and Simulation International Conference

Author: Christos H. Skiadas Format: Hardback Release Date: 29/05/2019

Gathering the proceedings of the 11th CHAOS2018 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies.

Generalized Statistical Thermodynamics Thermodynamics of Probability Distributions and Stochastic Processes

Generalized Statistical Thermodynamics Thermodynamics of Probability Distributions and Stochastic Processes

Author: Themis Matsoukas Format: Hardback Release Date: 20/05/2019

This book gives the definitive mathematical answer to what thermodynamics really is: a variational calculus applied to probability distributions. Extending Gibbs's notion of ensemble, the Author imagines the ensemble of all possible probability distributions and assigns probabilities to them by selection rules that are fairly general. The calculus of the most probable distribution in the ensemble produces the entire network of mathematical relationships we recognize as thermodynamics. The first part of the book develops the theory for discrete and continuous distributions while the second part applies this thermodynamic calculus to problems in population balance theory and shows how the emergence of a giant component in aggregation, and the shattering transition in fragmentation may be treated as formal phase transitions. While the book is intended as a research monograph, the material is self-contained and the style sufficiently tutorial to be accessible for self-paced study by an advanced graduate student in such fields as physics, chemistry, and engineering.

Monte Carlo Simulation in Statistical Physics An Introduction

Monte Carlo Simulation in Statistical Physics An Introduction

Author: Kurt Binder, Dieter W. Heermann Format: Hardback Release Date: 10/05/2019

The sixth edition of this highly successful textbook provides a detailed introduction to Monte Carlo simulation in statistical physics, which deals with the computer simulation of many-body systems in condensed matter physics and related fields of physics and beyond (traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, these powerful simulation methods calculate probability distributions, making it possible to estimate the thermodynamic properties of various systems. The book describes the theoretical background of these methods, enabling newcomers to perform such simulations and to analyse their results. It features a modular structure, with two chapters providing a basic pedagogic introduction plus exercises suitable for university courses; the remaining chapters cover major recent developments in the field. This edition has been updated with two new chapters dealing with recently developed powerful special algorithms and with finite size scaling tools for the study of interfacial phenomena, which are important for nanoscience. Previous editions have been highly praised and widely used by both students and advanced researchers.

From Strange Simplicity to Complex Familiarity A Treatise on Matter, Information, Life and Thought

From Strange Simplicity to Complex Familiarity A Treatise on Matter, Information, Life and Thought

Author: Manfred (Max-Planck-Institute for Biophysical Chemistry, Gottingen, Germany) Eigen Format: Paperback / softback Release Date: 24/04/2019

This book presents a vivid argument for the almost lost idea of a unity of all natural sciences. It starts with the strange physics of matter, including particle physics, atomic physics and quantum mechanics, cosmology, relativity and their consequences (Chapter I), and it continues by describing the properties of material systems that are best understood by statistical and phase-space concepts (Chapter II). These lead to entropy and to the classical picture of quantitative information, initially devoid of value and meaning (Chapter III). Finally, information space and dynamics within it are introduced as a basis for semantics (Chapter IV), leading to an exploration of life and thought as new problems in physics (Chapter V). Dynamic equations - again of a strange (but very general) nature - bring about the complex familiarity of the world we live in. Surprising new results in the life sciences open our eyes to the richness of physical thought, and they show us what can and what cannot be explained by a Darwinian approach. The abstract physical approach is applicable to the origins of life, of meaningful information and even of our universe.