LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Physics of gases

See below for a selection of the latest books from Physics of gases category. Presented with a red border are the Physics of gases books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Physics of gases books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Molecular Kinetics in Condensed Phases Theory, Simulation, and Analysis

Molecular Kinetics in Condensed Phases Theory, Simulation, and Analysis

Author: Ron Elber, Dmitrii E. Makarov, Henri Orland Format: Hardback Release Date: 24/01/2020

A guide to the theoretical and computational toolkits for the modern study of molecular kinetics in condensed phases Molecular Kinetics in Condensed Phases: Theory, Simulation and Analysis puts the focus on the theory, algorithms, simulations methods and analysis of molecular kinetics in condensed phases. The authors - noted experts on the topic - offer a detailed and thorough description of modern theories and simulation methods to model molecular events. They highlight the rigorous stochastic modelling of molecular processes and the use of mathematical models to reproduce experimental observations, such as rate coefficients, mean first passage times and transition path times. The book's exploration of simulations examines atomically detailed modelling of molecules in action and the connections of these simulations to theory and experiment. The authors also explore the applications that range from simple intuitive examples of one- and two-dimensional systems to complex solvated macromolecules. This important book: Offers an introduction to the topic that combines theory, simulation and analysis Presents a guide written by authors that are well-known and highly regarded leaders in their fields Contains detailed examples and explanation of how to conduct computer simulations of kinetics. A detailed study of a two-dimensional system and of a solvated peptide are discussed. Discusses modern developments in the field and explains their connection to the more traditional concepts in chemical dynamics Written for students and academic researchers in the fields of chemical kinetics, chemistry, computational statistical mechanics, biophysics and computational biology, Molecular Kinetics in Condensed Phases is the authoritative guide to the theoretical and computational toolkits for the study of molecular kinetics in condensed phases.

Correlations in Low-Dimensional Quantum Gases

Correlations in Low-Dimensional Quantum Gases

Author: Guillaume Lang Format: Hardback Release Date: 17/01/2019

The book addresses several aspects of thermodynamics and correlations in the strongly-interacting regime of one-dimensional bosons, a topic at the forefront of current theoretical and experimental studies. Strongly correlated systems of one-dimensional bosons have a long history of theoretical study. Their experimental realisation in ultracold atom experiments is the subject of current research, which took off in the early 2000s. Yet these experiments raise new theoretical questions, just begging to be answered. Correlation functions are readily available for experimental measurements. In this book, they are tackled by means of sophisticated theoretical methods developed in condensed matter physics and mathematical physics, such as bosonization, the Bethe Ansatz and conformal field theory. Readers are introduced to these techniques, which are subsequently used to investigate many-body static and dynamical correlation functions.

Physics On Ultracold Quantum Gases

Physics On Ultracold Quantum Gases

This book derives from the content of graduate courses on cold atomic gases, taught at the Renmin University of China and at the University of Science and Technology of China. It provides a brief review on the history and current research frontiers in the field of ultracold atomic gases, as well as basic theoretical description of few- and many-body physics in the system. Starting from the basics such as atomic structure, atom-light interaction, laser cooling and trapping, the book then moves on to focus on the treatment of ultracold Fermi gases, before turning to topics in quantum simulation using cold atoms in optical lattices.The book would be ideal not only for professionals and researchers, but also for familiarizing junior graduate students with the subject and aiding them in their preparation for future study and research in the field.

Vacuum Technique

Vacuum Technique

Author: L. N. Rozanov Format: Paperback / softback Release Date: 10/08/2018

Vacuum technology finds itself in many areas of industry and research. These include materials handling, packaging, gas sampling, filtration, degassing of oils and metals, thin-film coating, electron microscopy, particle acceleration, and impregnation of electrical components. It is vital to design systems that are appropriate to the application, and with so many potential solutions this can become overwhelming. Vacuum Technique provides an overview of vacuum technology, its different design methodologies, and the underlying theory. The author begins with a summary of the properties of low-pressure gases, then moves on to describe mathematical modeling of gas transfer in the vacuum system, the operation of pumps and gauges, computer-aided synthesis and analysis of systems, and the design of different vacuum systems. In particular, the author discusses the structure and characteristics of low, middle, high, and superhigh vacuum systems, as well as the characteristics of joints, materials, movement inputs, and all aspects of production technology and construction standards. Using specific examples rather than describing the various elements, Vacuum Technique supplies engineers, technicians, researchers, and students with needed expertise and a comprehensive guide to designing, selecting, and using an appropriate vacuum system for a specific purpose.

Computer Simulation of Liquids Second Edition

Computer Simulation of Liquids Second Edition

This book provides a practical guide to molecular dynamics and Monte Carlo simulation techniques used in the modelling of simple and complex liquids. Computer simulation is an essential tool in studying the chemistry and physics of condensed matter, complementing and reinforcing both experiment and theory. Simulations provide detailed information about structure and dynamics, essential to understand the many fluid systems that play a key role in our daily lives: polymers, gels, colloidal suspensions, liquid crystals, biological membranes, and glasses. The second edition of this pioneering book aims to explain how simulation programs work, how to use them, and how to interpret the results, with examples of the latest research in this rapidly evolving field. Accompanying programs in Fortran and Python provide practical, hands-on, illustrations of the ideas in the text.

Computer Simulation of Liquids Second Edition

Computer Simulation of Liquids Second Edition

This book provides a practical guide to molecular dynamics and Monte Carlo simulation techniques used in the modelling of simple and complex liquids. Computer simulation is an essential tool in studying the chemistry and physics of condensed matter, complementing and reinforcing both experiment and theory. Simulations provide detailed information about structure and dynamics, essential to understand the many fluid systems that play a key role in our daily lives: polymers, gels, colloidal suspensions, liquid crystals, biological membranes, and glasses. The second edition of this pioneering book aims to explain how simulation programs work, how to use them, and how to interpret the results, with examples of the latest research in this rapidly evolving field. Accompanying programs in Fortran and Python provide practical, hands-on, illustrations of the ideas in the text.

Ozone in the Atmosphere Basic Principles, Natural and Human Impacts

Ozone in the Atmosphere Basic Principles, Natural and Human Impacts

Author: Peter Fabian, Martin Dameris Format: Paperback / softback Release Date: 23/08/2016

Peter Fabian and Martin Dameris provide a concise yet comprehensive overview of established scientific knowledge about ozone in the atmosphere. They present both ozone changes and trends in the stratosphere, as well as the effects of overabundance in the troposphere including the phenomenon of photosmog. Aspects such as photochemistry, atmospheric dynamics and global ozone distribution as well as various techniques for ozone measurement are treated. The authors outline the various causes for ozone depletion, the effects of ozone pollution and the relation to climate change. The book provides a handy reference guide for researchers active in atmospheric ozone research and a useful introduction for advanced students specializing in this field. Non-specialists interested in this field will also profit from reading the book. Peter Fabian can look back on a life-long active career in ozone research, having first gained international recognition for his measurements of the global distribution of halogenated hydrocarbons. He also pioneered photosmog investigations in the metropolitan areas of Munich, Berlin, Athens and Santiago de Chile, and his KROFEX facility provided controlled ozone fumigation of adult tree canopies for biologists to investigate the effects of ozone increases on forests. Besides having published a broad range of scientific articles, he has also been the author or editor of numerous books. From 2002 to 2005 he served the European Geosciences Union (EGU) as their first and Founding President. Martin Dameris is a prominent atmospheric modeler whose interests include the impacts of all kinds of natural and man-made disturbances on the atmospheric system. His scientific work focuses on the connections between ozone and climate changes. For many years he has been an active contributor to the WMO scientific ozone depletion assessments, which have been used to monitor the depletion and recovery of the ozone layer in accordance with the Montreal Protocol.

The Statistical Mechanics of Lattice Gases, Volume I

The Statistical Mechanics of Lattice Gases, Volume I

Author: Barry Simon Format: Hardback Release Date: 19/04/2016

A state-of-the-art survey of both classical and quantum lattice gas models, this two-volume work will cover the rigorous mathematical studies of such models as the Ising and Heisenberg, an area in which scientists have made enormous strides during the past twenty-five years. This first volume addresses, among many topics, the mathematical background on convexity and Choquet theory, and presents an exhaustive study of the pressure including the Onsager solution of the two-dimensional Ising model, a study of the general theory of states in classical and quantum spin systems, and a study of high and low temperature expansions. The second volume will deal with the Peierls construction, infrared bounds, Lee-Yang theorems, and correlation inequality. This comprehensive work will be a useful reference not only to scientists working in mathematical statistical mechanics but also to those in related disciplines such as probability theory, chemical physics, and quantum field theory. It can also serve as a textbook for advanced graduate students. Originally published in 1993. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Fundamental Physics of Gases

Fundamental Physics of Gases

Author: V. Griffing, Karl Ferdinand Herzfeld Format: Hardback Release Date: 19/04/2016

Part of the Princeton Aeronautical Paperback series designed to bring to students and research engineers outstanding portions of the twelve-volume High Speed Aerodynamics and Jet Propulsion series. These books have been prepared by direct reproduction of the text from the original series and no attempt has been made to provide introductory material or to eliminate cross reference to other portions of the original volumes. Originally published in 1961. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Fundamental Physics of Gases

Fundamental Physics of Gases

Author: V. Griffing, Karl Ferdinand Herzfeld Format: Paperback / softback Release Date: 08/12/2015

Part of the Princeton Aeronautical Paperback series designed to bring to students and research engineers outstanding portions of the twelve-volume High Speed Aerodynamics and Jet Propulsion series. These books have been prepared by direct reproduction of the text from the original series and no attempt has been made to provide introductory material or to eliminate cross reference to other portions of the original volumes. Originally published in 1961. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Opacity

Opacity

Author: Walter F. Huebner, W. David Barfield Format: Hardback Release Date: 03/01/2014

This book covers all aspects of opacity and equations of state for gases, plasmas, and dust. The discussion emphasizes the continuous transformation of the equilibrium compositions of these phases as a function of temperature and density.

Collisionless Plasmas in Astrophysics

Collisionless Plasmas in Astrophysics

Author: Gerard Belmont, Roland Grappin, Fabrice Mottez, Filippo Pantellini Format: Hardback Release Date: 09/10/2013

Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as collisionless (Landau) damping . Abundant illustrations are given in both space physics and astrophysics.