LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Mensuration & systems of measurement

See below for a selection of the latest books from Mensuration & systems of measurement category. Presented with a red border are the Mensuration & systems of measurement books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Mensuration & systems of measurement books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Measure Theory

Measure Theory

Author: Sudhir Kumar Pundir Format: Paperback / softback Release Date: 11/11/2019

Quality Assured Measurement Unification across Social and Physical Sciences

Quality Assured Measurement Unification across Social and Physical Sciences

Author: Leslie Pendrill Format: Hardback Release Date: 06/11/2019

This book presents a general and comprehensive framework for the assurance of quality in measurements. Written by a foremost expert in the field, the text reflects an on-going international effort to extend traditional quality assured measurement, rooted in fundamental physics and the SI, to include non-physical areas such as person-centred care and the social sciences more generally. Chapter by chapter, the book follows the measurement quality assurance loop, based on Deming's work. The author enhances this quality assurance cycle with insights from recent research, including work on the politics and philosophy of metrology, the new SI, quantitative and qualitative scales and entropy, decision risks and uncertainty when addressing human challenges, Man as a Measurement Instrument, and Psychometry and Person-centred care. Quality Assured Measurement: Unification across Social and Physical Sciences provides students and researchers in physics, chemistry, engineering, medicine and the social sciences with practical guidance on designing, implementing and applying a quality-assured measurement while engaging readers in the most novel and expansive areas of contemporary measurement research.

Toward Inertial-Navigation-on-Chip The Physics and Performance Scaling of Multi-Degree-of-Freedom Resonant MEMS Gyroscopes

Toward Inertial-Navigation-on-Chip The Physics and Performance Scaling of Multi-Degree-of-Freedom Resonant MEMS Gyroscopes

Author: Haoran Wen Format: Hardback Release Date: 25/09/2019

This thesis develops next-generation multi-degree-of-freedom gyroscopes and inertial measurement units (IMU) using micro-electromechanical-systems (MEMS) technology. It covers both a comprehensive study of the physics of resonator gyroscopes and novel micro/nano-fabrication solutions to key performance limits in MEMS resonator gyroscopes. Firstly, theoretical and experimental studies of physical phenomena including mode localization, nonlinear behavior, and energy dissipation provide new insights into challenges like quadrature errors and flicker noise in resonator gyroscope systems. Secondly, advanced designs and micro/nano-fabrication methods developed in this work demonstrate valuable applications to a wide range of MEMS/NEMS devices. In particular, the HARPSS+ process platform established in this thesis features a novel slanted nano-gap transducer, which enabled the first wafer-level-packaged single-chip IMU prototype with co-fabricated high-frequency resonant triaxial gyroscopes and high-bandwidth triaxial micro-gravity accelerometers. This prototype demonstrates performance amongst the highest to date, with unmatched robustness and potential for flexible substrate integration and ultra-low-power operation. This thesis shows a path toward future low-power IMU-based applications including wearable inertial sensors, health informatics, and personal inertial navigation.

30 Day Ketogenic Cleanse The Ultimate Guide to Living the Keto Lifestyle

30 Day Ketogenic Cleanse The Ultimate Guide to Living the Keto Lifestyle

Author: Sarah Stewart Format: Paperback / softback Release Date: 10/08/2019

Introduction to Quantum Metrology The Revised SI System and Quantum Standards

Introduction to Quantum Metrology The Revised SI System and Quantum Standards

Author: Waldemar Nawrocki Format: Hardback Release Date: 14/06/2019

This book discusses the theory of quantum effects used in metrology, and presents the author's research findings in the field of quantum electronics. It also describes the quantum measurement standards used in various branches of metrology, such as those relating to electrical quantities, mass, length, time and frequency. The first comprehensive survey of quantum metrology problems, it introduces a new approach to metrology, placing a greater emphasis on its connection with physics, which is of importance for developing new technologies, nanotechnology in particular. Presenting practical applications of the effects used in quantum metrology for the construction of quantum standards and sensitive electronic components, the book is useful for a broad range of physicists and metrologists. It also promotes a better understanding and approval of the new system in both industry and academia. This second edition includes two new chapters focusing on the revised SI system and satellite positioning systems. Practical realization (mise en pratique) the base units (metre, kilogram, second, ampere, kelvin, candela, and mole), new defined in the revised SI, is presented in details. Another new chapter describes satellite positioning systems and their possible applications. In satellite positioning systems, like GPS, GLONASS, BeiDou and Galileo, quantum devices - atomic clocks - serve wide population of users.

Mass Metrology The Newly Defined Kilogram

Mass Metrology The Newly Defined Kilogram

Author: S. V. Gupta Format: Hardback Release Date: 02/04/2019

This second edition of Mass Metrology: The Newly Defined Kilogram has been thoroughly revised to reflect the recent redefinition of the kilogram in terms of Planck's constant. The necessity of defining the kilogram in terms of physical constants was already underscored in the first edition. However, the kilogram can also be defined in terms of Avogadro's number, using a collection of ions of heavy elements, by the levitation method, or using voltage and watt balances. The book also addresses the concepts of gravitational, inertial and conventional mass, and describes in detail the variation of acceleration due to gravity. Further topics covered in this second edition include: the effect of gravity variations on the reading of electronic balances derived with respect to latitude, altitude and earth topography; the classification of weights by the OIML; and maximum permissible error in different categories of weights prescribed by national and international organizations. The book also discusses group weighing techniques and the use of nanotechnology for the detection of mass differences as small as 10-24 g. Last but not least, readers will find details on the XRCD method for defining the kilogram in terms of Planck's constant.

Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017 Volume 1

Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017 Volume 1

Author: Zhen-An Liu Format: Paperback / softback Release Date: 29/12/2018

These two volumes present the proceedings of the International Conference on Technology and Instrumentation in Particle Physics 2017 (TIPP2017), which was held in Beijing, China from 22 to 26 May 2017. Gathering selected articles on the basis of their quality and originality, it highlights the latest developments and research trends in detectors and instrumentation for all branches of particle physics, particle astrophysics and closely related fields. This is the first volume, and focuses on the main themes Gaseous detectors, Semiconductor detectors, Experimental detector systems, Calorimeters, Particle identification, Photon detectors, Dark Matter Detectors and Neutrino Detectors. The TIPP2017 is the fourth in a series of international conferences on detectors and instrumentation, held under the auspices of the International Union of Pure and Applied Physics (IUPAP). The event brings together experts from the scientific and industrial communities to discuss their current efforts and plan for the future. The conference's aim is to provide a stimulating atmosphere for scientists and engineers from around the world.

Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017 Volume 2

Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017 Volume 2

Author: Zhen-An Liu Format: Paperback / softback Release Date: 29/12/2018

These two volumes present the proceedings of the International Conference on Technology and Instrumentation in Particle Physics 2017 (TIPP2017), which was held in Beijing, China from 22 to 26 May 2017. Gathering selected articles on the basis of their quality and originality, it highlights the latest developments and research trends in detectors and instrumentation for all branches of particle physics, particle astrophysics and closely related fields. This is the second volume, and focuses on the main themes Astrophysics and space instrumentation, Front-end electronics and fast data transmission, Trigger and data acquisition systems, Machine detectors, Interfaces and beam instrumentation, Backend readout structures and embedded systems, Medical imaging, and Security & other applications. The TIPP2017 is the fourth in a series of international conferences on detectors and instrumentation, held under the auspices of the International Union of Pure and Applied Physics (IUPAP). The event brings together experts from the scientific and industrial communities to discuss their current efforts and plan for the future. The conference's aim is to provide a stimulating atmosphere for scientists and engineers from around the world.

History and Measurement of the Base and Derived Units

History and Measurement of the Base and Derived Units

Author: Steven A. Treese Format: Paperback / softback Release Date: 26/12/2018

This book discusses how and why historical measurement units developed, and reviews useful methods for making conversions as well as situations in which dimensional analysis can be used. It starts from the history of length measurement, which is one of the oldest measures used by humans. It highlights the importance of area measurement, briefly discussing the methods for determining areas mathematically and by measurement. The book continues on to detail the development of measures for volume, mass, weight, time, temperature, angle, electrical units, amounts of substances, and light intensity. The seven SI/metric base units are highlighted, as well as a number of other units that have historically been used as base units. Providing a comprehensive reference for interconversion among the commonly measured quantities in the different measurement systems with engineering accuracy, it also examines the relationships among base units in fields such as mechanical/thermal, electromagnetic and physical flow rates and fluxes using diagrams.

Truth and Traceability in Physics and Metrology

Truth and Traceability in Physics and Metrology

Author: Michael Grabe Format: Hardback Release Date: 30/10/2018

Metrological data is known to be blurred by the imperfections of the measuring process. In retrospect, for about two centuries regular or constant errors were no focal point of experimental activities, only irregular or random error were. Today's notation of unknown systematic errors is in line with this. Confusingly enough, the worldwide practiced approach to belatedly admit those unknown systematic errors amounts to consider them as being random, too. This book discusses a new error concept dispensing with the common practice to randomize unknown systematic errors. Instead, unknown systematic errors will be treated as what they physically are- namely as constants being unknown with respect to magnitude and sign. The ideas considered in this book issue a proceeding steadily localizing the true values of the measurands and consequently traceability.

Truth and Traceability in Physics and Metrology

Truth and Traceability in Physics and Metrology

Author: Michael Grabe Format: Paperback / softback Release Date: 05/10/2018

Metrological data is known to be blurred by the imperfections of the measuring process. In retrospect, for about two centuries regular or constant errors were no focal point of experimental activities, only irregular or random error were. Today's notation of unknown systematic errors is in line with this. Confusingly enough, the worldwide practiced approach to belatedly admit those unknown systematic errors amounts to consider them as being random, too. This book discusses a new error concept dispensing with the common practice to randomize unknown systematic errors. Instead, unknown systematic errors will be treated as what they physically are- namely as constants being unknown with respect to magnitude and sign. The ideas considered in this book issue a proceeding steadily localizing the true values of the measurands and consequently traceability.

Non-driven Micromechanical Gyroscopes and Their Applications

Non-driven Micromechanical Gyroscopes and Their Applications

Author: Fuxue Zhang, Wei Zhang, Guosheng Wang Format: Paperback / softback Release Date: 04/09/2018

This book comprehensively and systematically introduces readers to the theories, structures, performance and applications of non-driven mechanical and non-driven micromechanical gyroscopes. The book is divided into three parts, the first of which mainly addresses mathematic models, precision, performance and operating error in non-driven mechanical gyroscopes. The second part focuses on the operating theory, error, phase shift and performance experiments involving non-driven micromechanical gyroscopes in rotating flight carriers, while the third part shares insights into the application of non-driven micromechanical gyroscopes in control systems for rotating flight carriers. The book offers a unique resource for all researchers and engineers who are interested in the use of inertial devices and automatic control systems for rotating flight carriers. It can also serve as a reference book for undergraduates, graduates and instructors in related fields at colleges and universities.