LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Mathematical modelling

See below for a selection of the latest books from Mathematical modelling category. Presented with a red border are the Mathematical modelling books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Mathematical modelling books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Research in Shape Analysis WiSH2, Sirince, Turkey, June 2016

Research in Shape Analysis WiSH2, Sirince, Turkey, June 2016

Author: Asli Genctav Format: Paperback / softback Release Date: 02/02/2019

Based on the second Women in Shape (WiSH) workshop held in Sirince, Turkey in June 2016, these proceedings offer the latest research on shape modeling and analysis and their applications. The 10 peer-reviewed articles in this volume cover a broad range of topics, including shape representation, shape complexity, and characterization in solving image-processing problems. While the first six chapters establish understanding in the theoretical topics, the remaining chapters discuss important applications such as image segmentation, registration, image deblurring, and shape patterns in digital fabrication. The authors in this volume are members of the WiSH network and their colleagues, and most were involved in the research groups formed at the workshop. This volume sheds light on a variety of shape analysis methods and their applications, and researchers and graduate students will find it to be an invaluable resource for further research in the area.

Reduced-Order Modeling (ROM) for Simulation and Optimization Powerful Algorithms as Key Enablers for Scientific Computing

Reduced-Order Modeling (ROM) for Simulation and Optimization Powerful Algorithms as Key Enablers for Scientific Computing

Author: Winfried Keiper Format: Paperback / softback Release Date: 26/01/2019

This edited monograph collects research contributions and addresses the advancement of efficient numerical procedures in the area of model order reduction (MOR) for simulation, optimization and control. The topical scope includes, but is not limited to, new out-of-the-box algorithmic solutions for scientific computing, e.g. reduced basis methods for industrial problems and MOR approaches for electrochemical processes. The target audience comprises research experts and practitioners in the field of simulation, optimization and control, but the book may also be beneficial for graduate students alike.

Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations

Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations

Author: Xinyuan Wu, Bin Wang Format: Paperback / softback Release Date: 26/01/2019

The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically describes the latest advances in the development of structure-preserving integrators for oscillatory differential equations, such as structure-preserving exponential integrators, functionally fitted energy-preserving integrators, exponential Fourier collocation methods, trigonometric collocation methods, and symmetric and arbitrarily high-order time-stepping methods. Most of the material presented here is drawn from the recent literature. Theoretical analysis of the newly developed schemes shows their advantages in the context of structure preservation. All the new methods introduced in this book are proven to be highly effective compared with the well-known codes in the scientific literature. This book also addresses challenging problems at the forefront of modern numerical analysis and presents a wide range of modern tools and techniques.

Mathematical Foundations of Computational Electromagnetism

Mathematical Foundations of Computational Electromagnetism

Author: Franck Assous, Patrick Ciarlet, Simon Labrunie Format: Paperback / softback Release Date: 04/01/2019

This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equations and boundary conditions are discussed, including a brief review of absorbing boundary conditions. The focus then moves to well-posedness results. The relevant function spaces are introduced, with an emphasis on boundary and topological conditions. General variational frameworks are defined for static and quasi-static problems, time-harmonic problems (including fixed frequency or Helmholtz-like problems and unknown frequency or eigenvalue problems), and time-dependent problems, with or without constraints. They are then applied to prove the well-posedness of Maxwell's equations and their simplified models, in the various settings described above. The book is completed with a discussion of dimensionally reduced models in prismatic and axisymmetric geometries, and a survey of existence and uniqueness results for the Vlasov-Poisson, Vlasov-Maxwell and MHD equations. The book addresses mainly researchers in applied mathematics who work on Maxwell's equations. However, it can be used for master or doctorate-level courses on mathematical electromagnetism as it requires only a bachelor-level knowledge of analysis.

Mathematical Modelling of Physical Systems

Mathematical Modelling of Physical Systems

Author: Michel Cessenat Format: Paperback / softback Release Date: 03/01/2019

Comprehensive and thorough, this monograph emphasizes the main role differential geometry and convex analysis play in the understanding of physical, chemical, and mechanical notions. Central focus is placed on specifying the agreement between the functional framework and its physical necessity and on making clear the intrinsic character of physical elements, independent from specific charts or frames. The book is divided into four sections, covering thermostructure, classical mechanics, fluid mechanics modelling, and behavior laws. An extensive appendix provides notations and definitions as well as brief explanation of integral manifolds, symplectic structure, and contact structure. Plenty of examples are provided throughout the book, and reviews of basic principles in differential geometry and convex analysis are presented as needed. This book is a useful resource for graduate students and researchers in the field.

Mathematical Modelling of Systems and Analysis

Mathematical Modelling of Systems and Analysis

Author: K. Kamalanand, P. Mannar Jawahar Format: Paperback / softback Release Date: 30/12/2018

Introduction to Queueing Networks Theory Practice

Introduction to Queueing Networks Theory Practice

Author: J. MacGregor Smith Format: Paperback / softback Release Date: 22/12/2018

The book examines the performance and optimization of systems where queueing and congestion are important constructs. Both finite and infinite queueing systems are examined. Many examples and case studies are utilized to indicate the breadth and depth of the queueing systems and their range of applicability. Blocking of these processes is very important and the book shows how to deal with this problem in an effective way and not only compute the performance measures of throughput, cycle times, and WIP but also to optimize the resources within these systems. The book is aimed at advanced undergraduate, graduate, and professionals and academics interested in network design, queueing performance models and their optimization. It assumes that the audience is fairly sophisticated in their mathematical understanding, although the explanations of the topics within the book are fairly detailed.

Trends in Applications of Mathematics to Mechanics

Trends in Applications of Mathematics to Mechanics

Author: Elisabetta Rocca Format: Paperback / softback Release Date: 19/12/2018

This volume originates from the INDAM Symposium on Trends on Applications of Mathematics to Mechanics (STAMM), which was held at the INDAM headquarters in Rome on 5-9 September 2016. It brings together original contributions at the interface of Mathematics and Mechanics. The focus is on mathematical models of phenomena issued from various applications. These include thermomechanics of solids and gases, nematic shells, thin films, dry friction, delamination, damage, and phase-field dynamics. The papers in the volume present novel results and identify possible future developments. The book is addressed to researchers involved in Mathematics and its applications to Mechanics.

Mathematical Models, Methods and Applications

Mathematical Models, Methods and Applications

Author: Abul Hasan Siddiqi Format: Paperback / softback Release Date: 09/12/2018

The present volume contains invited talks of 11th biennial conference on Emerging Mathematical Methods, Models and Algorithms for Science and Technology . The main message of the book is that mathematics has a great potential to analyse and understand the challenging problems of nanotechnology, biotechnology, medical science, oil industry and financial technology. The book highlights all the features and main theme discussed in the conference. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world.

Comprehensive Applied Mathematical Modeling in the Natural and Engineering Sciences Theoretical Predictions Compared with Data

Comprehensive Applied Mathematical Modeling in the Natural and Engineering Sciences Theoretical Predictions Compared with Data

Author: David J. Wollkind, Bonni J. Dichone Format: Paperback / softback Release Date: 09/12/2018

This text demonstrates the process of comprehensive applied mathematical modeling through the introduction of various case studies. The case studies are arranged in increasing order of complexity based on the mathematical methods required to analyze the models. The development of these methods is also included, providing a self-contained presentation. To reinforce and supplement the material introduced, original problem sets are offered involving case studies closely related to the ones presented. With this style, the text's perspective, scope, and completeness of the subject matter are considered unique. Having grown out of four self-contained courses taught by the authors, this text will be of use in a two-semester sequence for advanced undergraduate and beginning graduate students, requiring rudimentary knowledge of advanced calculus and differential equations, along with a basic understanding of some simple physical and biological scientific principles.

Frontiers in Computational Fluid-Structure Interaction and Flow Simulation Research from Lead Investigators under Forty - 2018

Frontiers in Computational Fluid-Structure Interaction and Flow Simulation Research from Lead Investigators under Forty - 2018

Author: Tayfun E. Tezduyar Format: Hardback Release Date: 19/11/2018

Computational fluid-structure interaction and flow simulation are challenging research areas that bring solution and analysis to many classes of problems in science, engineering, and technology. Young investigators under the age of 40 are conducting much of the frontier research in these areas, some of which is highlighted in this book. The first author of each chapter took the lead role in carrying out the research presented. The topics covered include Computational aerodynamic and FSI analysis of wind turbines, Simulating free-surface FSI and fatigue-damage in wind-turbine structural systems, Aorta flow analysis and heart valve flow and structure analysis, Interaction of multiphase fluids and solid structures, Computational analysis of tire aerodynamics with actual geometry and road contact, and A general-purpose NURBS mesh generation method for complex geometries. This book will be a valuable resource for early-career researchers and students - not only those interested in computational fluid-structure interaction and flow simulation, but also other fields of engineering and science, including fluid mechanics, solid mechanics and computational mathematics - as it will provide them with inspiration and guidance for conducting their own successful research. It will also be of interest to senior researchers looking to learn more about successful research led by those under 40 and possibly offer collaboration to these researchers.

Mathematical Modelling of Physical Systems

Mathematical Modelling of Physical Systems

Author: Michel Cessenat Format: Hardback Release Date: 07/11/2018

Comprehensive and thorough, this monograph emphasizes the main role differential geometry and convex analysis play in the understanding of physical, chemical, and mechanical notions. Central focus is placed on specifying the agreement between the functional framework and its physical necessity and on making clear the intrinsic character of physical elements, independent from specific charts or frames. The book is divided into four sections, covering thermostructure, classical mechanics, fluid mechanics modelling, and behavior laws. An extensive appendix provides notations and definitions as well as brief explanation of integral manifolds, symplectic structure, and contact structure. Plenty of examples are provided throughout the book, and reviews of basic principles in differential geometry and convex analysis are presented as needed. This book is a useful resource for graduate students and researchers in the field.