LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Topology

See below for a selection of the latest books from Topology category. Presented with a red border are the Topology books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Topology books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Intuitive Topology

Intuitive Topology

Format: Paperback / softback Release Date: 08/06/2020

This book is an introduction to elementary topology presented in an intuitive way, emphasizing the visual aspect. Examples of nontrivial and often unexpected topological phenomena acquaint the reader with the picturesque world of knots, links, vector fields, and two-dimensional surfaces. The book begins with definitions presented in a tangible and perceptible way, on an everyday level, and progressively makes them more precise and rigorous, eventually reaching the level of fairly sophisticated proofs. This allows meaningful problems to be tackled from the outset. Another unusual trait of this book is that it deals mainly with constructions and maps, rather than with proofs that certain maps and constructions do or do not exist. The numerous illustrations are an essential feature. The book is accessible not only to undergraduates but also to high school students and will interest any reader who has some feeling for the visual elegance of geometry and topology.

Homological and Homotopical Aspects of Torsion Theories

Homological and Homotopical Aspects of Torsion Theories

Author: Apostolos Beligiannis, Idun Reiten Format: Paperback / softback Release Date: 08/06/2020

In this paper the authors investigate homological and homotopical aspects of a concept of torsion which is general enough to cover torsion and cotorsion pairs in abelian categories, $t$-structures and recollements in triangulated categories, and torsion pairs in stable categories. The proper conceptual framework for this study is the general setting of pretriangulated categories, an omnipresent class of additive categories which includes abelian, triangulated, stable, and more generally (homotopy categories of) closed model categories in the sense of Quillen, as special cases. The main focus of their study is on the investigation of the strong connections and the interplay between (co)torsion pairs and tilting theory in abelian, triangulated and stable categories on one hand, and universal cohomology theories induced by torsion pairs on the other hand. These new universal cohomology theories provide a natural generalization of the Tate-Vogel (co)homology theory. The authors also study the connections between torsion theories and closed model structures, which allow them to classify all cotorsion pairs in an abelian category and all torsion pairs in a stable category, in homotopical terms. For instance they obtain a classification of (co)tilting modules along these lines. Finally they give torsion theoretic applications to the structure of Gorenstein and Cohen-Macaulay categories, which provide a natural generalization of Gorenstein and Cohen-Macaulay rings.

Ordered Groups and Topology

Ordered Groups and Topology

Author: Adam Clay, Dale Rolfsen Format: Hardback Release Date: 08/06/2020

This book deals with the connections between topology and ordered groups. It begins with a self-contained introduction to orderable groups and from there explores the interactions between orderability and objects in low-dimensional topology, such as knot theory, braid groups, and 3-manifolds, as well as groups of homeomorphisms and other topological structures. The book also addresses recent applications of orderability in the studies of codimension-one foliations and Heegaard-Floer homology. The use of topological methods in proving algebraic results is another feature of the book. The book was written to serve both as a textbook for graduate students, containing many exercises, and as a reference for researchers in topology, algebra, and dynamical systems. A basic background in group theory and topology is the only prerequisite for the reader.

Differential Geometry and Symmetric Spaces

Differential Geometry and Symmetric Spaces

Format: Hardback Release Date: 07/06/2020

Sigurdur Helgason's Differential Geometry and Symmetric Spaces was quickly recognized as a remarkable and important book. For many years, it was the standard text both for Riemannian geometry and for the analysis and geometry of symmetric spaces. Several generations of mathematicians relied on it for its clarity and careful attention to detail. Although much has happened in the field since the publication of this book, as demonstrated by Helgason's own three-volume expansion of the original work, this single volume is still an excellent overview of the subjects.For instance, even though there are now many competing texts, the chapters on differential geometry and Lie groups continue to be among the best treatments of the subjects available. There is also a well-developed treatment of Cartan's classification and structure theory of symmetric spaces. The last chapter, on functions on symmetric spaces, remains an excellent introduction to the study of spherical functions, the theory of invariant differential operators, and other topics in harmonic analysis. This text is rightly called a classic. Sigurdur Helgason was awarded the Steele Prize for Groups and Geometric Analysis and the companion volume, Differential Geometry, Lie Groups and Symmetric Spaces .

Advances in Moduli Theory

Advances in Moduli Theory

Format: Paperback / softback Release Date: 04/06/2020

The word 'moduli' in the sense of this book first appeared in the epoch-making paper of B. Riemann, Theorie der Abel'schen Funktionen, published in 1857. Riemann defined a Riemann surface of an algebraic function field as a branched covering of a one-dimensional complex projective space, and found out that Riemann surfaces have parameters. This work gave birth to the theory of moduli. However, the viewpoint regarding a Riemann surface as an algebraic curve became the mainstream, and the moduli meant the parameters for the figures (graphs) defined by equations. In 1913, H. Weyl defined a Riemann surface as a complex manifold of dimension one. Moreover, Teichmuller's theory of quasiconformal mappings and Teichmuller spaces made a start for new development of the theory of moduli, making possible a complex analytic approach toward the theory of moduli of Riemann surfaces.This theory was then investigated and made complete by Ahlfors, Bers, Rauch, and others. However, the theory of Teichmuller spaces utilized the special nature of complex dimension one, and it was difficult to generalize it to an arbitrary dimension in a direct way. It was Kodaira-Spencer's deformation theory of complex manifolds that allowed one to study arbitrary dimensional complex manifolds. Initial motivation in Kodaira-Spencer's discussion was the need to clarify what one should mean by number of moduli. Their results, together with further work by Kuranishi, provided this notion with intrinsic meaning. This book begins by presenting the Kodaira-Spencer theory in its original naive form in Chapter 1 and introduces readers to moduli theory from the viewpoint of complex analytic geometry.Chapter 2 briefly outlines the theory of period mapping and Jacobian variety for compact Riemann surfaces, with the Torelli theorem as a goal. The theory of period mappings for compact Riemann surfaces can be generalized to the theory of period mappings in terms of Hodge structures for compact Kahler manifolds. In Chapter 3, the authors state the theory of Hodge structures, focusing briefly on period mappings. Chapter 4 explains conformal field theory as an application of moduli theory. This is the English translation of a book originally published in Japanese. Other books by Kenji Ueno published in this AMS series, Translations of Mathematical Monographs , include An Introduction to Algebraic Geometry , Volume 166, Algebraic Geometry 1: From Algebraic Varieties to Schemes , Volume 185, and Algebraic Geometry 2: Sheaves and Cohomology , Volume 197.

Grid Homology for Knots and Links

Grid Homology for Knots and Links

Author: Peter S. Ozsvath, Andras I. Stipsicz, Zoltan Szabo Format: Hardback Release Date: 03/06/2020

Knot theory is a classical area of low-dimensional topology, directly connected with the theory of three-manifolds and smooth four-manifold topology. In recent years, the subject has undergone transformative changes thanks to its connections with a number of other mathematical disciplines, including gauge theory; representation theory and categorification; contact geometry; and the theory of pseudo-holomorphic curves. Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory, specifically as it relates to some of the above developments. After a brief overview of the background material in the subject, the book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams. Applications include computations of the unknotting number and slice genus of torus knots (asked first in the 1960s and settled in the 1990s), and tools to study variants of knot theory in the presence of a contact structure. Additional topics are presented to prepare readers for further study in holomorphic methods in low-dimensional topology, especially Heegaard Floer homology. The book could serve as a textbook for an advanced undergraduate or part of a graduate course in knot theory. Standard background material is sketched in the text and the appendices.

Topology, C*-algebras, and String Duality

Topology, C*-algebras, and String Duality

Format: Paperback / softback Release Date: 02/06/2020

String theory is the leading candidate for a physical theory that combines all the fundamental forces of nature, as well as the principles of relativity and quantum mechanics, into a mathematically elegant whole. The mathematical tools used by string theorists are highly sophisticated, and cover many areas of mathematics. As with the birth of quantum theory in the early 20th century, the mathematics has benefited at least as much as the physics from the collaboration. In this book, based on CBMS lectures given at Texas Christian University, Rosenberg describes some of the most recent interplay between string dualities and topology and operator algebras. The book is an interdisciplinary approach to duality symmetries in string theory. It can be read by either mathematicians or theoretical physicists, and involves a more-or-less equal mixture of algebraic topology, operator algebras, and physics. There is also a bit of algebraic geometry, especially in the last chapter. The reader is assumed to be somewhat familiar with at least one of these four subjects, but not necessarily with all or even most of them. The main objective of the book is to show how several seemingly disparate subjects are closely linked with one another, and to give readers an overview of some areas of current research, even if this means that not everything is covered systematically.

A First Course in Topology

A First Course in Topology

Author: John McCleary Format: Paperback / softback Release Date: 01/06/2020

How many dimensions does our universe require for a comprehensive physical description? In 1905, Poincare argued philosophically about the necessity of the three familiar dimensions, while recent research is based on 11 dimensions or even 23 dimensions. The notion of dimension itself presented a basic problem to the pioneers of topology. Cantor asked if dimension was a topological feature of Euclidean space. To answer this question, some important topological ideas were introduced by Brouwer, giving shape to a subject whose development dominated the twentieth century. The basic notions in topology are varied and a comprehensive grounding in point-set topology, the definition and use of the fundamental group, and the beginnings of homology theory requires considerable time.The goal of this book is a focused introduction through these classical topics, aiming throughout at the classical result of the Invariance of Dimension. This text is based on the author's course given at Vassar College and is intended for advanced undergraduate students. It is suitable for a semester-long course on topology for students who have studied real analysis and linear algebra. It is also a good choice for a capstone course, senior seminar, or independent study.

Mapping Degree Theory

Mapping Degree Theory

Format: Hardback Release Date: 01/06/2020

This textbook treats the classical parts of mapping degree theory, with a detailed account of its history traced back to the first half of the 18th century. After a historical first chapter, the remaining four chapters develop the mathematics. An effort is made to use only elementary methods, resulting in a self-contained presentation. Even so, the book arrives at some truly outstanding theorems: the classification of homotopy classes for spheres and the Poincare-Hopf Index Theorem, as well as the proofs of the original formulations by Cauchy, Poincare, and others. Although the mapping degree theory you will discover in this book is a classical subject, the treatment is refreshing for its simple and direct style. The straightforward exposition is accented by the appearance of several uncommon topics: tubular neighborhoods without metrics, differences between class 1 and class 2 mappings, Jordan Separation with neither compactness nor cohomology, explicit constructions of homotopy classes of spheres, and the direct computation of the Hopf invariant of the first Hopf fibration. The book is suitable for a one-semester graduate course. There are 180 exercises and problems of different scope and difficulty.

Lehrbuch Der Topologie

Lehrbuch Der Topologie

Format: Hardback Release Date: 31/05/2020

The 1930s were important years in the development of modern topology, pushed forward by the appearance of a few pivotal books, of which this is one. The focus is on combinatorial and algebraic topology, with as much point-set topology as needed for the main topics. One sees from the modern point of view that the authors are working in a category of spaces that includes locally finite simplicial complexes. (Their definition of manifold is more properly known today as a triangulizable homology manifold .)Amazingly, they manage to accomplish a lot without the convenient tools of homological algebra, such as exact sequences and commutative diagrams, that were developed later. The main topics covered are: simplicial homology (coefficients in $\mathbb{Z}$ or $\mathbb{Z}_2$), local homology, surface topology, the fundamental group and covering spaces, three-manifolds, Poincare duality, and the Lefschetz fixed point theorem. Few prerequisites are necessary. A final section reviews the lemmas and theorems from group theory that are needed in the text. As stated in the introduction to the important book by Alexandroff and Hopf (which appeared a year after Seifert and Threlfall ): 'Its lively and instructive presentation makes this book particularly suitable as an introduction or as a textbook.'