LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Algebraic geometry

See below for a selection of the latest books from Algebraic geometry category. Presented with a red border are the Algebraic geometry books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Algebraic geometry books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Berkeley Lectures on p-adic Geometry

Berkeley Lectures on p-adic Geometry

Author: Peter Scholze, Jared Weinstein Format: Hardback Release Date: 09/06/2020

Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of diamonds, which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.

Berkeley Lectures on p-adic Geometry

Berkeley Lectures on p-adic Geometry

Author: Peter Scholze, Jared Weinstein Format: Paperback / softback Release Date: 09/06/2020

Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of diamonds, which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.

Integrable Systems and Algebraic Geometry: Volume 2

Integrable Systems and Algebraic Geometry: Volume 2

Author: Ron (University of Pennsylvania) Donagi Format: Paperback / softback Release Date: 31/03/2020

Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. The articles in this second volume discuss areas related to algebraic geometry, emphasizing the connections of this central subject to integrable systems, arithmetic geometry, Riemann surfaces, coding theory and lattice theory.

Arc Schemes And Singularities

Arc Schemes And Singularities

Author: Johannes (Imperial College London, Uk & Univ Of Leuven, Belgium) Nicaise Format: Hardback Release Date: 30/03/2020

This title introduces the theory of arc schemes in algebraic geometry and singularity theory, with special emphasis on recent developments around the Nash problem for surfaces. The main challenges are to understand the global and local structure of arc schemes, and how they relate to the nature of the singularities on the variety. Since the arc scheme is an infinite dimensional object, new tools need to be developed to give a precise meaning to the notion of a singular point of the arc scheme.Other related topics are also explored, including motivic integration and dual intersection complexes of resolutions of singularities. Written by leading international experts, it offers a broad overview of different applications of arc schemes in algebraic geometry, singularity theory and representation theory.

Algebraic Varieties

Algebraic Varieties

Author: J.N. Looijenga Format: Paperback / softback Release Date: 30/03/2020

This new textbook is based upon the notes that accompany the author's graduate course Algebraic Geometry I at Tsinghua University. Much of commutative algebra owes its existence to algebraic geometry and vice versa, and this is why there is no clear border between the two. In learning algebraic geometry, you not only learn more commutative algebra, but also develop a geometrical way of thinking about it.

Hopf Algebras and Tensor Categories

Hopf Algebras and Tensor Categories

Author: Nicolas Andruskiewitsch Format: Paperback / softback Release Date: 06/03/2020

This volume contains the proceedings of the Conference on Hopf Algebras and Tensor Categories, held July 4-8, 2011, at the University of Almeria, Almeria, Spain. The articles in this volume cover a wide variety of topics related to the theory of Hopf algebras and its connections to other areas of mathematics. In particular, this volume contains a survey covering aspects of the classification of fusion categories using Morita equivalence methods, a long, self-contained, and comprehensive introduction to Hopf algebras in the category of species, and a summary of the status to date of the classification of Hopf algebras of dimensions up to 100. Among other articles in this volume are a study of normalised class sum and generalised character table for semisimple Hopf algebras, a contribution to the classification program of finite dimensional pointed Hopf algebras, an analysis of conjugacy classes related to a conjecture of De Concini, Kac, and Procesi on representations of quantum groups at roots of unity, a categorical approach to the Drinfeld double of a braided Hopf algebra via Hopf monads, an overview of Hom-Hopf algebras, and several discussions on the crossed product construction in different settings.

MPS-SIAM Series on Optimization Semidefinite Optimization and Convex Algebraic Geometry

MPS-SIAM Series on Optimization Semidefinite Optimization and Convex Algebraic Geometry

Author: Grigoriy (Georgia Institute of Technology) Blekherman Format: Paperback / softback Release Date: 06/03/2020

This book provides a self-contained, accessible introduction to the mathematical advances and challenges resulting from the use of semidefinite programming in polynomial optimization. This important and highly applicable research area, with contributions from convex geometry, algebraic geometry and optimization, is known as convex algebraic geometry. Each chapter addresses a fundamental aspect of the topic, beginning with an introduction to nonnegative polynomials and sums of squares, and their connections to semidefinite programming. The material quickly advances to areas at the forefront of current research, including semidefinite representability of convex sets, duality theory in algebraic geometry, and nontraditional topics such as sums of squares of complex forms. The book is a suitable entry point to the subject for readers at the graduate level or above in mathematics, engineering or computer science. Instructors will find the book appropriate for a class or seminar, and researchers will encounter open problems and new research directions.

CBMS-NSF Regional Conference Series in Applied Mathematics Mathematical Aspects of Geometric Modeling

CBMS-NSF Regional Conference Series in Applied Mathematics Mathematical Aspects of Geometric Modeling

Author: Charles A. (IBM T J Watson Research Center, New York) Micchelli Format: Paperback / softback Release Date: 06/03/2020

This monograph examines in detail certain concepts that are useful for the modeling of curves and surfaces and emphasizes the mathematical theory that underlies these ideas. The two principal themes of the text are the use of piecewise polynomial representation (this theme appears in one form or another in every chapter), and iterative refinement, also called subdivision. Here, simple iterative geometric algorithms produce, in the limit, curves with complex analytic structure. In the first three chapters, the de Casteljau subdivision for Bernstein-Bezier curves is used to introduce matrix subdivision, and the Lane-Riesenfield algorithm for computing cardinal splines is tied into stationary subdivision. This ultimately leads to the construction of prewavelets of compact support. The remainder of the book deals with concepts of visual smoothness of curves, along with the intriguing idea of generating smooth multivariate piecewise polynomials as volumes of slices of polyhedra.

An Introduction to Algebraic Geometry

An Introduction to Algebraic Geometry

Author: Katsumi Nomizu Format: Paperback / softback Release Date: 05/03/2020

This introduction to algebraic geometry allows readers to grasp the fundamentals of the subject with only linear algebra and calculus as prerequisites. After a brief history of the subject, the book introduces projective spaces and projective varieties, and explains plane curves and resolution of their singularities. The volume further develops the geometry of algebraic curves and treats congruence zeta functions of algebraic curves over a finite field. It concludes with a complex analytical discussion of algebraic curves. The author emphasizes computation of concrete examples rather than proofs, and these examples are discussed from various viewpoints. This approach allows readers to develop a deeper understanding of the theorems.

Elliptic Curves, Modular Forms and Their L-functions

Elliptic Curves, Modular Forms and Their L-functions

Author: Alvaro Lozano-Robledo Format: Paperback / softback Release Date: 05/03/2020

Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.

Birationally Rigid Varieties

Birationally Rigid Varieties

Author: Aleksandr Pukhlikov Format: Hardback Release Date: 04/03/2020

Birational rigidity is a striking and mysterious phenomenon in higher-dimensional algebraic geometry. It turns out that certain natural families of algebraic varieties (for example, three-dimensional quartics) belong to the same classification type as the projective space but have radically different birational geometric properties. In particular, they admit no non-trivial birational self-maps and cannot be fibred into rational varieties by a rational map. The origins of the theory of birational rigidity are in the work of Max Noether and Fano; however, it was only in 1970 that Iskovskikh and Manin proved birational superrigidity of quartic three-folds. This book gives a systematic exposition of, and a comprehensive introduction to, the theory of birational rigidity, presenting in a uniform way, ideas, techniques, and results that so far could only be found in journal papers. The recent rapid progress in birational geometry and the widening interaction with the neighboring areas generate the growing interest to the rigidity-type problems and results. The book brings the reader to the frontline of current research. It is primarily addressed to algebraic geometers, both researchers and graduate students, but is also accessible for a wider audience of mathematicians familiar with the basics of algebraic geometry.

An Introduction to Central Simple Algebras and Their Applications to Wireless Communication

An Introduction to Central Simple Algebras and Their Applications to Wireless Communication

Author: Gregory Berhuy, Frederique Oggier Format: Hardback Release Date: 04/03/2020

Central simple algebras arise naturally in many areas of mathematics. They are closely connected with ring theory, but are also important in representation theory, algebraic geometry and number theory. Recently, surprising applications of the theory of central simple algebras have arisen in the context of coding for wireless communication. The exposition in the book takes advantage of this serendipity, presenting an introduction to the theory of central simple algebras intertwined with its applications to coding theory. Many results or constructions from the standard theory are presented in classical form, but with a focus on explicit techniques and examples, often from coding theory. Topics covered include quaternion algebras, splitting fields, the Skolem-Noether Theorem, the Brauer group, crossed products, cyclic algebras and algebras with a unitary involution. Code constructions give the opportunity for many examples and explicit computations. This book provides an introduction to the theory of central algebras accessible to graduate students, while also presenting topics in coding theory for wireless communication for a mathematical audience. It is also suitable for coding theorists interested in learning how division algebras may be useful for coding in wireless communication.