Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Numerical analysis

See below for a selection of the latest books from Numerical analysis category. Presented with a red border are the Numerical analysis books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Numerical analysis books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Monte Carlo Methods

This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.

Spectral Methods Using Multivariate Polynomials On The Unit Ball

Spectral Methods Using Multivariate Polynomials on the Unit Ball is a research level text on a numerical method for the solution of partial differential equations. The authors introduce, illustrate with examples, and analyze 'spectral methods' that are based on multivariate polynomial approximations. The method presented is an alternative to finite element and difference methods for regions that are diffeomorphic to the unit disk, in two dimensions, and the unit ball, in three dimensions. The speed of convergence of spectral methods is usually much higher than that of finite element or finite difference methods. Features Introduces the use of multivariate polynomials for the construction and analysis of spectral methods for linear and nonlinear boundary value problems Suitable for researchers and students in numerical analysis of PDEs, along with anyone interested in applying this method to a particular physical problem One of the few texts to address this area using multivariate orthogonal polynomials, rather than tensor products of univariate polynomials.

Applied Analysis of Composite Media Analytical and Computational Results for Materials Scientists and Engineers

Applied Analysis of Composite Media: Analytical and Computational Approaches presents formulas and techniques that can used to study 2D and 3D problems in composites and random porous media. The main strength of this book is its broad range of applications that illustrate how these techniques can be applied to investigate elasticity, viscous flow and bacterial motion in composite materials. In addition to paying attention to constructive computations, the authors have also included information on codes via a designated webpage. This book will be extremely useful for postgraduate students, academic researchers, mathematicians and industry professionals who are working in structured media.

Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization From a Game Theoretic Approach to Numerical Approximation and Algorithm Design

Although numerical approximation and statistical inference are traditionally covered as entirely separate subjects, they are intimately connected through the common purpose of making estimations with partial information. This book explores these connections from a game and decision theoretic perspective, showing how they constitute a pathway to developing simple and general methods for solving fundamental problems in both areas. It illustrates these interplays by addressing problems related to numerical homogenization, operator adapted wavelets, fast solvers, and Gaussian processes. This perspective reveals much of their essential anatomy and greatly facilitates advances in these areas, thereby appearing to establish a general principle for guiding the process of scientific discovery. This book is designed for graduate students, researchers, and engineers in mathematics, applied mathematics, and computer science, and particularly researchers interested in drawing on and developing this interface between approximation, inference, and learning.

Numerical Geometry, Grid Generation and Scientific Computing Proceedings of the 9th International Conference, NUMGRID 2018 / Voronoi 150, Celebrating the 150th Anniversary of G.F. Voronoi, Moscow, Rus

The focus of these conference proceedings is on research, development, and applications in the fields of numerical geometry, scientific computing and numerical simulation, particularly in mesh generation and related problems. In addition, this year's special focus is on Voronoi diagrams and their applications, celebrating the 150th birthday of G.F. Voronoi. In terms of content, the book strikes a balance between engineering algorithms and mathematical foundations. It presents an overview of recent advances in numerical geometry, grid generation and adaptation in terms of mathematical foundations, algorithm and software development and applications. The specific topics covered include: quasi-conformal and quasi-isometric mappings, hyperelastic deformations, multidimensional generalisations of the equidistribution principle, discrete differential geometry, spatial and metric encodings, Voronoi-Delaunay theory for tilings and partitions, duality in mathematical programming and numerical geometry, mesh-based optimisation and optimal control methods. Further aspects examined include iterative solvers for variational problems and algorithm and software development. The applications of the methods discussed are multidisciplinary and include problems from mathematics, physics, biology, chemistry, material science, and engineering.

An Invitation to the Theory of the Hybridizable Discontinuous Galerkin Method Projections, Estimates, Tools

This monograph requires basic knowledge of the variational theory of elliptic PDE and the techniques used for the analysis of the Finite Element Method. However, all the tools for the analysis of FEM (scaling arguments, finite dimensional estimates in the reference configuration, Piola transforms) are carefully introduced before being used, so that the reader does not need to go over longforgotten textbooks. Readers include: computational mathematicians, numerical analysts, engineers and scientists interested in new and computationally competitive Discontinuous Galerkin methods. The intended audience includes graduate students in computational mathematics, physics, and engineering, since the prerequisites are quite basic for a second year graduate student who has already taken a non necessarily advanced class in the Finite Element method.

Introduction to Numerical Methods for Variational Problems

This textbook teaches finite element methods from a computational point of view. It focuses on how to develop flexible computer programs with Python, a programming language in which a combination of symbolic and numerical tools is used to achieve an explicit and practical derivation of finite element algorithms. The finite element library FEniCS is used throughout the book, but the content is provided in sufficient detail to ensure that students with less mathematical background or mixed programming-language experience will equally benefit. All program examples are available on the Internet.

Computational Partial Differential Equations Using MATLAB (R)

In this popular text for an Numerical Analysis course, the authors introduce several major methods of solving various partial differential equations (PDEs) including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques including the classic finite difference method, finite element method, and state-of-the-art numercial methods.The text uniquely emphasizes both theoretical numerical analysis and practical implementation of the algorithms in MATLAB. This new edition includes a new chapter, Finite Value Method, the presentation has been tightened, new exercises and applications are included, and the text refers now to the latest release of MATLAB. Key Selling Points: A successful textbook for an undergraduate text on numerical analysis or methods taught in mathematics and computer engineering. This course is taught in every university throughout the world with an engineering department or school. Competitive advantage broader numerical methods (including finite difference, finite element, meshless method, and finite volume method), provides the MATLAB source code for most popular PDEs with detailed explanation about the implementation and theoretical analysis. No other existing textbook in the market offers a good combination of theoretical depth and practical source codes.

Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2

Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, Volume 20, surveys the contemporary developments relating to the analysis and learning of images, shapes and forms, covering mathematical models and quick computational techniques. Chapter cover Alternating Diffusion: A Geometric Approach for Sensor Fusion, Generating Structured TV-based Priors and Associated Primal-dual Methods, Graph-based Optimization Approaches for Machine Learning, Uncertainty Quantification and Networks, Extrinsic Shape Analysis from Boundary Representations, Efficient Numerical Methods for Gradient Flows and Phase-field Models, Recent Advances in Denoising of Manifold-Valued Images, Optimal Registration of Images, Surfaces and Shapes, and much more.

Matrix Methods in Data Mining and Pattern Recognition

This thoroughly revised second edition provides an updated treatment of numerical linear algebra techniques for solving problems in data mining and pattern recognition. Adopting an application-oriented approach, the author introduces matrix theory and decompositions, describes how modern matrix methods can be applied in real life scenarios, and provides a set of tools that students can modify for a particular application. Building on material from the first edition, the author discusses basic graph concepts and their matrix counterparts. He introduces the graph Laplacian and properties of its eigenvectors needed in spectral partitioning and describes spectral graph partitioning applied to social networks and text classification. Examples are included to help readers visualize the results. This new edition also presents matrix-based methods that underlie many of the algorithms used for big data. The book provides a solid foundation to further explore related topics and presents applications such as classification of handwritten digits, text mining, text summarization, PageRank computations related to the Google search engine, and facial recognition. Exercises and computer assignments are available on a Web page that supplements the book. Matrix Methods in Data Mining and Pattern Recognition, Second Edition is primarily for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course and graduate students in data mining and pattern recognition areas who need an introduction to linear algebra techniques.