LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Complex analysis, complex variables

See below for a selection of the latest books from Complex analysis, complex variables category. Presented with a red border are the Complex analysis, complex variables books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Complex analysis, complex variables books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

Introduction to Holomorphic Functions of Several Variables, Volume II

Introduction to Holomorphic Functions of Several Variables, Volume II

Author: R.C. Gunning Format: Paperback / softback Release Date: 30/09/2020

Introduction to Holomorphlc Functions of SeveralVariables, Volumes 1-111 provide an extensiveintroduction to the Oka-Cartan theory of holomorphicfunctions of several variables and holomorphicvarieties. Each volume covers a different aspect andcan be read independently.

Complex Function Theory

Complex Function Theory

Author: Donald Sarason Format: Hardback Release Date: 17/08/2020

Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation.

Generalized Analytic Continuation

Generalized Analytic Continuation

Format: Paperback / softback Release Date: 16/08/2020

The theory of generalized analytic continuation studies continuations of meromorphic functions in situations where traditional theory says there is a natural boundary. This broader theory touches on a remarkable array of topics in classical analysis, as described in the book. This book addresses the following questions: when can we say, in some reasonable way, that component functions of a meromorphic function on a disconnected domain, are 'continuations' of each other? What role do such 'continuations' play in certain aspects of approximation theory and operator theory? The authors use the strong analogy with the summability of divergent series to motivate the subject. In this vein, for instance, theorems can be described as being 'Abelian' or 'Tauberian'. The introductory overview carefully explains the history and context of the theory.The authors begin with a review of the works of Poincare, Borel, Wolff, Walsh, and Goncar, on continuation properties of 'Borel series' and other meromorphic functions that are limits of rapidly convergent sequences of rational functions. They then move on to the work of Tumarkin, who looked at the continuation properties of functions in the classical Hardy space of the disk in terms of the concept of 'pseudocontinuation'. Tumarkin's work was seen in a different light by Douglas, Shapiro, and Shields in their discovery of a characterization of the cyclic vectors for the backward shift operator on the Hardy space.The authors cover this important concept of 'pseudocontinuation' quite thoroughly since it appears in many areas of analysis. They also add a new and previously unpublished method of 'continuation' to the list, based on formal multiplication of trigonometric series, which can be used to examine the backward shift operator on many spaces of analytic functions. The book attempts to unify the various types of 'continuations' and suggests some interesting open questions.

Automorphic Forms and L-functions

Automorphic Forms and L-functions

Author: Jianya Liu Format: Paperback / softback Release Date: 16/08/2020

This is a collection of lecture notes from the conference CIMPA-UNESCO-CHINA Research School 2010: Automorphic forms and L-functions, held at the Weihai campus of Shandong University, China in August 2010. Included are lectures given by J. Cogdell, G. Harcos, Xiaoqing Li, P. Michel, A. Reznikov, F. Shahidi, and Yangbo Ye. These lectures provide a helpful introduction to automorphic forms and L-functions, and to the arithmetic applications thereof.

Mirror Symmetry

Mirror Symmetry

Format: Hardback Release Date: 15/08/2020

This thorough and detailed exposition is the result of an intensive month-long course sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives. The material will be particularly useful for those wishing to advance their understanding by exploring mirror symmetry at the interface of mathematics and physics. This one-of-a-kind volume offers the first comprehensive exposition on this increasingly active area of study. It is carefully written by leading experts who explain the main concepts without assuming too much prerequisite knowledge. The book is an excellent resource for graduate students and research mathematicians interested in mathematical and theoretical physics.

Complex Dynamics and Geometry

Complex Dynamics and Geometry

Format: Paperback / softback Release Date: 14/08/2020

In the last twenty years, the theory of holomorphic dynamical systems has had a resurgence of activity, particularly concerning the fine analysis of Julia sets associated with polynomials and rational maps in one complex variable. At the same time, closely related theories have had a similar rapid development, for example the qualitative theory of differential equations in the complex domain. The meeting, 'Etat de la recherche', held at Ecole Normale Superieure de Lyon, presented the current state of the art in this area, emphasizing the unity linking the various sub-domains. This volume contains four survey articles corresponding to the talks presented at this meeting. D. Cerveau describes the structure of polynomial differential equations in the complex plane, focusing on the local analysis in neighborhoods of singular points.E. Ghys surveys the theory of laminations by Riemann surfaces which occur in many dynamical or geometrical situations. N. Sibony describes the present state of the generalization of the Fatou-Julia theory for polynomial or rational maps in two or more complex dimensions. Lastly, the talk by J.-C. Yoccoz, written by M. Flexor, considers polynomials of degree $2$ in one complex variable, and in particular, with the hyperbolic properties of these polynomials centered around the Jakobson theorem. This is a general introduction that gives a basic history of holomorphic dynamical systems, demonstrating the numerous and fruitful interactions among the topics. In the spirit of the 'Etat de la recherche de la SMF' meetings, the articles are written for a broad mathematical audience, especially students or mathematicians working in different fields. This book is translated from the French edition by Leslie Kay.

Moduli Spaces of Curves, Mapping Class Groups and Field Theory

Moduli Spaces of Curves, Mapping Class Groups and Field Theory

Format: Paperback / softback Release Date: 13/08/2020

This is a collection of articles that grew out of a workshop organized to discuss deep links among various topics that were previously considered unrelated. Rather than a typical workshop, this gathering was unique as it was structured more like a course for advanced graduate students and research mathematicians. In the book, the authors present applications of moduli spaces of Riemann surfaces in theoretical physics and number theory and on Grothendieck's dessins d'enfants and their generalizations. Chapter 1 gives an introduction to Teichmuller space that is more concise than the popular textbooks, yet contains full proofs of many useful results which are often difficult to find in the literature. This chapter also contains an introduction to moduli spaces of curves, with a detailed description of the genus zero case, and in particular of the part at infinity.Chapter 2 takes up the subject of the genus zero moduli spaces and gives a complete description of their fundamental groupoids, based at tangential base points neighboring the part at infinity; the description relies on an identification of the structure of these groupoids with that of certain canonical subgroupoids of a free braided tensor category. It concludes with a study of the canonical Galois action on the fundamental groupoids, computed using Grothendieck-Teichmuller theory. Finally, Chapter 3 studies strict ribbon categories, which are closely related to braided tensor categories: here they are used to construct invariants of 3-manifolds which in turn give rise to quantum field theories. The material is suitable for advanced graduate students and researchers interested in algebra, algebraic geometry, number theory, and geometry and topology.

Introduction to Complex Analysis

Introduction to Complex Analysis

Author: Rolf Nevalinna, Veikko Paatero Format: Hardback Release Date: 12/08/2020

It really is a gem, both in terms of its table of contents and the level of discussion. The exercises also look very good. --Clifford Earle, Cornell University This book has a soul and has passion. --William Abikoff, University of Connecticut This classic book gives an excellent presentation of topics usually treated in a complex analysis course, starting with basic notions (rational functions, linear transformations, analytic function), and culminating in the discussion of conformal mappings, including the Riemann mapping theorem and the Picard theorem. The two quotes above confirm that the book can be successfully used as a text for a class or for self-study.

Elliptic Functions and Elliptic Integrals

Elliptic Functions and Elliptic Integrals

Author: V.V. Prasolov, Yu P. Solovyev Format: Hardback Release Date: 11/08/2020

This book is devoted to the geometry and arithmetic of elliptic curves and to elliptic functions with applications to algebra and number theory. It includes modern interpretations of some famous classical algebraic theorems such as Abel's theorem on the lemniscate and Hermite's solution of the fifth degree equation by means of theta functions. Suitable as a text, the book is self-contained and assumes as prerequisites only the standard one-year courses of algebra and analysis.

Complex Variables

Complex Variables

Author: H. S. Kasana Format: Paperback / softback Release Date: 11/08/2020

Elements of the Theory of Elliptic Functions

Elements of the Theory of Elliptic Functions

Author: N.I. Akhiezer Format: Paperback / softback Release Date: 11/08/2020

This book contains a systematic presentation of the theory of elliptic functions and some of its applications. A translation from the Russian, this book is intended primarily for engineers who work with elliptic functions. It should be accessible to those with background in the elements of mathematical analysis and the theory of functions contained in approximately the first two years of mathematics and physics courses at the college level.

The Kernal Function and Conformal Mapping

The Kernal Function and Conformal Mapping

Format: Paperback / softback Release Date: 07/08/2020

The Kernel Function and Conformal Mapping by Stefan Bergman is a revised edition of The Kernel Function . The author has made extensive changes in the original volume. The present book will be of interest not only to mathematicians, but also to engineers, physicists, and computer scientists. The applications of orthogonal functions in solving boundary value problems and conformal mappings onto canonical domains are discussed; and publications are indicated where programs for carrying out numerical work using high-speed computers can be found.The unification of methods in the theory of functions of one and several complex variables is one of the purposes of introducing the kernel function and the domains with a distinguished boundary. This approach has been extensively developed during the last two decades. This second edition of Professor Bergman's book reviews this branch of the theory including recent developments not dealt with in the first edition. The presentation of the topics is simple and presupposes only knowledge of an elementary course in the theory of analytic functions of one variable.