LoveReading

Becoming a member of the LoveReading community is free.

No catches, no fine print just unadulterated book loving, with your favourite books saved to your own digital bookshelf.

New members get entered into our monthly draw to win £100 to spend in your local bookshop Plus lots lots more…

Find out more

Set theory

See below for a selection of the latest books from Set theory category. Presented with a red border are the Set theory books that have been lovingly read and reviewed by the experts at Lovereading. With expert reading recommendations made by people with a passion for books and some unique features Lovereading will help you find great Set theory books and those from many more genres to read that will keep you inspired and entertained. And it's all free!

The Incompleteness Phenomenon

The Incompleteness Phenomenon

Author: Martin Goldstern, Haim Judah Format: Paperback / softback Release Date: 27/09/2019

This introduction to mathematical logic takes Goedel's incompleteness theorem as a starting point. It goes beyond a standard text book and should interest everyone from mathematicians to philosophers and general readers who wish to understand the foundations and limitations of modern mathematics.

Invariant Descriptive Set Theory

Invariant Descriptive Set Theory

Author: Su Gao Format: Paperback / softback Release Date: 05/09/2019

Presents Results from a Very Active Area of Research Exploring an active area of mathematics that studies the complexity of equivalence relations and classification problems, Invariant Descriptive Set Theory presents an introduction to the basic concepts, methods, and results of this theory. It brings together techniques from various areas of mathematics, such as algebra, topology, and logic, which have diverse applications to other fields. After reviewing classical and effective descriptive set theory, the text studies Polish groups and their actions. It then covers Borel reducibility results on Borel, orbit, and general definable equivalence relations. The author also provides proofs for numerous fundamental results, such as the Glimm-Effros dichotomy, the Burgess trichotomy theorem, and the Hjorth turbulence theorem. The next part describes connections with the countable model theory of infinitary logic, along with Scott analysis and the isomorphism relation on natural classes of countable models, such as graphs, trees, and groups. The book concludes with applications to classification problems and many benchmark equivalence relations. By illustrating the relevance of invariant descriptive set theory to other fields of mathematics, this self-contained book encourages readers to further explore this very active area of research.

Set Theory: The Structure of Arithmetic

Set Theory: The Structure of Arithmetic

Author: NormanT. Hamilton Format: Paperback / softback Release Date: 29/06/2018

Understanding Mathematical Proof

Understanding Mathematical Proof

Author: John Taylor Format: Hardback Release Date: 28/06/2018

The notion of proof is central to mathematics yet it is one of the most difficult aspects of the subject to teach and master. In particular, undergraduate mathematics students often experience difficulties in understanding and constructing proofs. Understanding Mathematical Proof describes the nature of mathematical proof, explores the various techniques that mathematicians adopt to prove their results, and offers advice and strategies for constructing proofs. It will improve students ability to understand proofs and construct correct proofs of their own. The first chapter of the text introduces the kind of reasoning that mathematicians use when writing their proofs and gives some example proofs to set the scene. The book then describes basic logic to enable an understanding of the structure of both individual mathematical statements and whole mathematical proofs. It also explains the notions of sets and functions and dissects several proofs with a view to exposing some of the underlying features common to most mathematical proofs. The remainder of the book delves further into different types of proof, including direct proof, proof using contrapositive, proof by contradiction, and mathematical induction. The authors also discuss existence and uniqueness proofs and the role of counter examples.

The Universal Computer The Road from Leibniz to Turing, Third Edition

The Universal Computer The Road from Leibniz to Turing, Third Edition

Author: Martin Davis Format: Hardback Release Date: 26/02/2018

The breathtakingly rapid pace of change in computing makes it easy to overlook the pioneers who began it all. The Universal Computer: The Road from Leibniz to Turing explores the fascinating lives, ideas, and discoveries of seven remarkable mathematicians. It tells the stories of the unsung heroes of the computer age - the logicians.

The Universal Computer The Road from Leibniz to Turing, Third Edition

The Universal Computer The Road from Leibniz to Turing, Third Edition

Author: Martin Davis Format: Paperback / softback Release Date: 19/02/2018

The breathtakingly rapid pace of change in computing makes it easy to overlook the pioneers who began it all. The Universal Computer: The Road from Leibniz to Turing explores the fascinating lives, ideas, and discoveries of seven remarkable mathematicians. It tells the stories of the unsung heroes of the computer age - the logicians.

A Concise Introduction to Pure Mathematics

A Concise Introduction to Pure Mathematics

Author: Martin Liebeck Format: Hardback Release Date: 13/11/2017

Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler`s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler`s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.

Essentials of Mathematical Thinking

Essentials of Mathematical Thinking

Author: Steven G. Krantz Format: Paperback / softback Release Date: 07/11/2017

Essentials of Mathematical Thinking addresses the growing need to better comprehend mathematics today. Increasingly, our world is driven by mathematics in all aspects of life. The book is an excellent introduction to the world of mathematics for students not majoring in mathematical studies. The author has written this book in an enticing, rich manner that will engage students and introduce new paradigms of thought. Careful readers will develop critical thinking skills which will help them compete in today's world. The book explains: What goes behind a Google search algorithm How to calculate the odds in a lottery The value of Big Data How the nefarious Ponzi scheme operates Instructors will treasure the book for its ability to make the field of mathematics more accessible and alluring with relevant topics and helpful graphics. The author also encourages readers to see the beauty of mathematics and how it relates to their lives in meaningful ways.

Relation Algebras

Relation Algebras

Author: Steven Givant Format: Hardback Release Date: 07/11/2017

Collecting, curating, and illuminating over 75 years of progress since Tarski's seminal work in 1941, this textbook in two volumes offers a landmark, unified treatment of the increasingly relevant field of relation algebras. Clear and insightful prose guides the reader through material previously only available in scattered, highly-technical journal articles. Students and experts alike will appreciate the work as both a textbook and invaluable reference for the community. This set charts relation algebras from novice to expert level. The first volume, Introduction to Relation Algebras, offers a comprehensive grounding for readers new to the topic. The second, Advanced Topics in Relation Algebras, build on this foundation and advances the reader into the deeper mathematical results of the past few decades. Such material offers an ideal preparation for research in relation algebras and Boolean algebras with operators. Note that the second volume contains numerous, essential references to the first. Readers of the advanced material are encouraged to purchase the pair as a set, as access to the first book is necessary to make use of the second.

Mathematical Logic and Theoretical Computer Science

Mathematical Logic and Theoretical Computer Science

Author: David Kueker Format: Hardback Release Date: 06/11/2017

Mathematical Logic and Theoretical Computer Science covers various topics ranging from recursion theory to Zariski topoi. Leading international authorities discuss selected topics in a number of areas, including denotational semanitcs, reccuriosn theoretic aspects fo computer science, model theory and algebra, Automath and automated reasoning, stability theory, topoi and mathematics, and topoi and logic. The most up-to-date review available in its field, Mathematical Logic and Theoretical Computer Science will be of interest to mathematical logicians, computer scientists, algebraists, algebraic geometers, differential geometers, differential topologists, and graduate students in mathematics and computer science.

Optimal Regularity and the Free Boundary in the Parabolic Signorini Problem

Optimal Regularity and the Free Boundary in the Parabolic Signorini Problem

Author: Donatella Danielli, Nicola Garofalo, Arshak Petrosyan, Tung To Format: Paperback / softback Release Date: 30/10/2017

The authors give a comprehensive treatment of the parabolic Signorini problem based on a generalization of Almgren's monotonicity of the frequency. This includes the proof of the optimal regularity of solutions, classification of free boundary points, the regularity of the regular set and the structure of the singular set.

Mathematics A Minimal Introduction

Mathematics A Minimal Introduction

Author: Alexandru Buium Format: Hardback Release Date: 25/09/2017

Bridging the gap between procedural mathematics that emphasizes calculations and conceptual mathematics that focuses on ideas, Mathematics: A Minimal Introduction presents an undergraduate-level introduction to pure mathematics and basic concepts of logic. The author builds logic and mathematics from scratch using essentially no background except natural language. He also carefully avoids circularities that are often encountered in related books and places special emphasis on separating the language of mathematics from metalanguage and eliminating semantics from set theory. The first part of the text focuses on pre-mathematical logic, including syntax, semantics, and inference. The author develops these topics entirely outside the mathematical paradigm. In the second part, the discussion of mathematics starts with axiomatic set theory and ends with advanced topics, such as the geometry of cubics, real and p-adic analysis, and the quadratic reciprocity law. The final part covers mathematical logic and offers a brief introduction to model theory and incompleteness. Taking a formalist approach to the subject, this text shows students how to reconstruct mathematics from language itself. It helps them understand the mathematical discourse needed to advance in the field.