Get 2 top 10 audiobooks free with a LoveReading exclusive

LoveReading has teamed up with to give you the chance to get 2 free audiobooks when you sign up. Try it for 30 days for free with no strings attached. You can cancel anytime, although we're sure you'll love it. Click the button to find out more:

Find out more

Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor

by Iraj Sadegh Amiri, Mahdiar Ghadiry

Part of the SpringerBriefs in Applied Sciences and Technology Series

Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor Synopsis

This book discusses analytical approaches and modeling of the breakdown voltage (BV) effects on graphene-based transistors. It presents semi-analytical models for lateral electric field, length of velocity saturation region (LVSR), ionization coefficient ( ), and breakdown voltage (BV) of single and double-gate graphene nanoribbon field effect transistors (GNRFETs). The application of Gauss's law at drain and source regions is employed in order to derive surface potential and lateral electric field equations. LVSR is then calculated as a solution of surface potential at saturation condition. The ionization coefficient is modelled and calculated by deriving equations for probability of collisions in ballistic and drift modes based on the lucky drift theory of ionization. The threshold energy of ionization is computed using simulation and an empirical equation is derived semi-analytically. Lastly avalanche breakdown condition is employed to calculate the lateral BV. On the basis of this, simple analytical and semi-analytical models are proposed for the LVSR and BV, which could be used in the design and optimization of semiconductor devices and sensors. The proposed equations are used to examine BV at different channel lengths, supply voltages, oxide thickness, GNR widths, and gate voltages. Simulation results show that the operating voltage of FETs could be as low as 0.25 V in order to prevent breakdown. However, after optimization, it can go as high as 1.5 V. This work is useful for researchers working in the area of graphene nanoribbon-based transistors.

Book Information

ISBN: 9789811065491
Publication date: 16th November 2017
Author: Iraj Sadegh Amiri, Mahdiar Ghadiry
Publisher: Springer Verlag, Singapore
Format: Paperback / softback
Pagination: 86 pages
Categories: Precision instruments manufacture, Circuits & components, Nanotechnology,

About Iraj Sadegh Amiri, Mahdiar Ghadiry

Mahdiar Ghadiry is a postdoctorate in electronics at the University of Malaya (UM), received his PhD in microelectronics, and has more than six years of experience at the university including managing, lecturing, and supervising master's and degree-level students. He has an extensive research background and has published more than 30 ISI journal articles and 3 books. In addition, he has been involved in the electronics industry for three years, and has more than four years of experience in integrated circuit (IC) design and embedded system design as an employee of the Electronic Components Industries (ECI), which is the biggest IC design company ...

More About Iraj Sadegh Amiri, Mahdiar Ghadiry

Share this book